Асинхронный двигатель

Принцип действия

Принцип действия электродвигателя демонстрирует простейший опыт, который всем нам показывали в школе — вращение рамки с током в поле постоянного магнита.

Рамка с током — это аналог ротора, неподвижный магнит — статор. Если в рамку подать ток, она повернется перпендикулярно направлению магнитного поля и застынет в этом положении. Если заставить магнит крутиться, рамка будет вращаться с той же скоростью, то есть синхронно с магнитом. У нас получился синхронный электродвигатель. Но у нас магнит — это статор, а он по определению неподвижен. Как заставить вращаться магнитное поле неподвижного статора?

Для начала заменим постоянный магнит катушкой с током. Это обмотка нашего статора. Как известно из той же школьной физики, катушка с током создает магнитное поле. Последнее пропорционально величине тока, а полярность зависит от направления тока в катушке. Если подать в катушку переменный ток, получим переменное поле.

Нам поможет очень наглядная аналогия с часами. Какие векторы вращаются постоянно перед нашими глазами? Это часовые стрелки. Представим, что в углу комнаты висят часы. Секундная стрелка вращается, делая один полный оборот в минуту. Стрелка — вектор единичной длины.

Тень, которую стрелка отбрасывает на стену, меняется как синус с периодом в 1 минуту, а тень, отбрасываемая на пол — как косинус. Или синус, сдвинутый по фазе на 90 градусов. Но вектор равен сумме своих проекций. Другими словами, стрелка равна векторной сумме своих теней.

Нахождение начал и концов обмоток

Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.

Поиск парных клемм

Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:

  1. Ко второму зажиму в сети подсоедините один из выводов. Свободных останется 5;
  2. Включите лампу в сеть через третий зажим;
  3. Второй конец провода соедините с одной из клемм статора;
  4. Если свечения нет, то разъедините их и подключите к другому выводу;
  5. Меняйте соединение лампы со свободными контактами до тех пор, пока не будет замечено накала в лампочке. Как только появился свет, подключенные к сети контакты статора пометьте. Это пара одной из намоток;
  6. Точно так же определите две оставшиеся пары;
  7. Пометьте каждую пару так, чтобы в последующем не приходилось вновь их искать.

К недостаткам применения микрошагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового двигателя;
  • Нет обратной связи с ЧПУ;
  • Расходуемая электроэнергия не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы;

Сравнение двухфазных и трёхфазных шаговых двигателей

Наиболее распространенные шаговые двигатели – двухфазные и трёхфазные. И зачастую, при выборе лазерного станка или фрезерного станка с ЧПУ, встаёт вопрос, с какими шаговыми двигателями взять станок? Двухфазный шаговый двигатель является более оптимальным вариантом в 90 % случаев и имеют больше. Объясняется это следующими факторами:

  • более простая и надёжная схема устройства
  • подходит под большинство драйверов для станков с ЧПУ
  • двигатели и драйвера к ним стоят меньше, чем трёхфазные

Трёхфазные двигатели имеют большую дискретность шага, но разница минимальна. При выборе станка гораздо большее значение имеет сам конструктив оборудования, так как именно от этого зависит общая точность. Шаговый двигатель влияет на точность только в совокупности с остальными частями лазерного или фрезерного станка. Качество шагового двигателя не определяется углом шага.

Так, например, при рассмотрении двух одинаковых станков с одинаковой кинематикой, простая установка качественного редуктора 1/20 позволяет добиться на двигателе с шагом 1,8 градуса точности в разы большей, чем на двигателе с шагом 0,9 градуса. Качество шагового двигателя определяют такие моменты, как качество сборки, биение на валах, люфт на валах и погрешность на шаг.

Подводя итог – двухфазные двигатели, на сегодняшний день являются более оптимальным выбором, ввиду названных выше факторов.

Каталог лазерных ЧПУ станков — открыть.

Каталог фрезерных ЧПУ станков — открыть.

Двухфазные и однофазные асинхронные двигатели

Если у статора двигателя запитать только одну фазную обмотку, то вращающегося магнитного поля не получим. Если же статор двигателя будет содержать две обмотки, оси которых сдвинуты в пространстве на угол 90 градусов, и обеспечить питание этих обмоток токами, сдвинутыми по фазе на угол π/2, то получим суммарное вращающееся магнитное поле.

На этом принципе основана работа двухфазного асинхронного двигателя. Если одну обмотку питать непосредственно от сети, то вторую необходимо запитать через фазосдвигающее устройство, например, через конденсатор (Рис. 4.11). При пуске двигателя используют емкость двух параллельно соединенных конденсаторов С12. Для этого перед включением рубильника S1должен быть включен выключатель S2. Для лучших условий пуска емкость конденсаторов подбирают так, чтобы вращающееся магнитное поле статора было круговым. После запуска двигателя при номинальной нагрузке изменение тока второй обмотки вызовет изменение тока на конденсаторе, а, значит, и напряжение на второй обмотке изменится по величине и по фазе. Это приведет к изменению соотношения магнитных полей двух катушек. Результирующее магнитное поле станет эллиптическим, магнитный поток станет пульсирующим. При этом вращающий момент уменьшится. Этот недостаток устраняется путем уменьшения емкости фазосдвигающих конденсаторов за счет отключения конденсатора С2. Отключение может осуществляться при достижении необходимой частоты вращения (75…80% пНОМ) автоматически – с помощью центробежного выключателя, реле времени либо иным способом.

Рис.4.11 – Включение двухфазного двигателя в сеть

Двухфазные двигатели с регулируемой частотой вращения имеют вместо обычного короткозамкнутого ротора полый ротор в виде тонкостенного алюминиевого цилиндра, вращающегося в узком воздушном зазоре между статором и неподвижным центральным сердечником — внутренним статором. Частота вращения регулируется изменением действующего значения или фазы напряжения одной из обмоток. Такие двигатели имеют очень малую инерцию и используются при автоматическом регулировании ряда производственных процессов.

Однофазные асинхронные двигатели не развивают начального пускового момента. Однако, если ротор такого двигателя раскрутить в любую сторону, то он будет вращаться самостоятельно и может развивать значительный вращающий момент.

Задача пуска однофазного двигателя решается посредством применения дополнительной (пусковой) обмотки, рассчитанной на кратковременную нагрузку током и отключаемую по окончании пуска. Последовательно с этой обмоткой включается пусковой конденсатор или иное фазосдвигающее устройство.

Дата добавления: 2016-01-18 ; просмотров: 1054 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Однофазные электрические двигатели

Это наиболее маломощные агрегаты, мощность которых не более 10 кВт. Область их применения достаточно широка, благодаря некоторым конструкционным особенностям и небольшим размерам. В основном это бытовое оборудование в однофазной сети. Различные стиральные машины, холодильники и маломощные вентиляторы – это не полный список мест установки однофазных приборов.

Эти агрегаты применяются и в промышленном оборудовании для вспомогательных операций.

Типы пуска однофазного оборудования

Их подразделяют на 2 типа:

  1. Бифилярный , в этом случае обмотка не работает постоянно. Это используется как пусковое устройство, которое работает по несколько секунд до 30 раз за час. В этом случае при наборе номинальных оборотов, обмотка выключается. При увеличении сроков работы такого прибора может возникнуть поломка из-за перегрева витков обмотки.
  2. Конденсаторный тип обеспечивает наиболее приемлемый пусковой момент и создание кругового магнитного поля. Принцип работы конденсаторного оборудования основан на основе вращения магнитного поля, при этом в устройстве присутствует 2 катушки находящиеся под постоянным напряжением.

Преимущества и недостатки однофазного оборудования

К преимущества относят:

  • небольшие габариты и вес;
  • невысокая цена по сравнению с трехфазным оборудованием;
  • питание осуществляется от сети с переменным током;
  • ротор выполнен короткозамкнутым – это позволило упростить конструкцию приборов.

К недостаткам оборудования относят:

  • невысокий уровень КПД;
  • оборудование обладает малым пусковым моментом;
  • затруднения при регулировании частоты вращения.

Двухфазный двигатель

Двухфазный двигатель — электрический двигатель переменного тока с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного тока, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор двигателя обычно изготавливается в виде «беличьего колеса». Обычно число стержней короткозамкнутого ротора не связано с числом пар полюсов статора, то есть при двух парах полюсов статора число стержней ротора может быть, например, 14 штук. Есть некие соображения, по которым число стержней ротора должно быть связано с числом полюсов ротора.

Техника Технические науки Электротехника Электрические машины

1. Асинхронный однофазный электродвигатель

Если прервать один из трех питающих проводов вращающегося асинхронного трехфазного электродвигателя, то при небольшой нагрузке он будет продолжать работу на одной фазе. В двигателе остается вращающееся поле. Однако при однофазном включении в состоянии покоя такой двигатель не будет работать даже без нагрузки. Если третью фазу обмотки подключить через конденсатор к одному из двух питающих проводов, то трёхфазный двигатель, подсоединенный к сети однофазного тока, начнет работать и его рабочие характеристики будут сходны с характеристиками обычного трехфазного асинхронного двигателя.

2. Асинхронный двухфазный электродвигатель

Вращающиеся магнитные поля могут быть созданы и двухфазными обмотками, если эти обмотки пространственно смещены на 90° друг относительно друга. Если эти обмотки питать двумя токами, смещёнными на 90° по фазе, то получается, как и в трехфазном электродвигателе, вращающееся магнитное поле. В двухфазном электродвигателе создается вращающий момент, обусловленный токами, вызванными вращающимся магнитным полем в стержнях ротора электродвигателя. Ротор получает ускорение до тех пор, пока он — как и в трёхфазном асинхронном двигателе — не достигнет определенной конечной частоты вращения, которая ниже частоты вращения поля. Если обе обмотки статора питать от одной и той же сети однофазного тока, то сдвиг фазы в одной из обмоток, необходимый для получения вращающегося поля, может быть реализован последовательным включением конденсатора с достаточной емкостью. На рисунке показана схема двухфазного асинхронного двигателя с конденсатором при питании от сети переменного тока. Сдвиг фазы в одной из обмоток можно получить и последовательным включением резистора, но в этом случае увеличиваются потери активной мощности. Также сдвиг фазы получается, если взамен внешнего резистора на полюсе или полюсах одной из обмоток размещается короткозамкнутый виток. В этом случае увеличиваются потери активной мощности в соответствующей обмотке, зато исключается внешний резистор. Такие двигатели обычно имеют небольшую мощность и используются, например, в бытовых вентиляторах. В настоящее время расширилась сфера применения двухфазного асинхронного двигателя в виде электродвигателя с полым ротором. В таком электродвигателе вместо обычного короткозамкнутого ротора применяется алюминиевый цилиндр, который может вращаться в воздушном зазоре между внешним и внутренним статорами. Вращающееся поле вызывает в алюминиевом цилиндре вихревые токи, которые, взаимодействуя с магнитным полем в воздушном зазоре, создают вращающий момент. Цилиндр достигает конечной асинхронной частоты вращения, которая соответствует нагрузке на валу. Небольшой момент инерции ротора электродвигателя обусловливает благоприятные рабочие характеристики. Электродвигатели с полым ротором рассчитаны прежде всего на небольшие мощности и применяются для автоматического регулирования в компенсационных и мостовых схемах. Одна из обмоток вместе с конденсатором подключается к сети с напряжением, на вторую обмотку подается управляющее напряжение.

Пятифазные двигатели

На фоне перечисленных выше вариантов пятифазные двигатель гораздо больше похож на двухфазный из-за особенностей конструкции. В большинстве случаев для работы хватает и обычного, однако пятифазный двигатель находит своё применение в тех случаях, когда системе не хватает разрешения, разгона и торможения. Кроме того он имеет сниженную вибрацию и повышенную точность.

В чём же состоит отличие этих моторов? В первую очередь в конструкции — 2-фазный двигатель имеет восемь магнитных полюсов, в то время как 5-фазный целых десять

Каждый из них оснащён обмоткой, что приводит нас ко второму важному отличию — числу фаз. Как легко понять по названию двигателя, в двухфазном их всего две, условно обозначаемые как А и В

Пятифазные же имеет сразу пять фаз — от А до Е. Таким образом, пока первый вариант мотора работает в строго ограниченном режиме, второй может с лёгкостью переключаться между разными параметрами, подключая фазы в различных комбинациях. Это позволяет широко варьировать производительность, стабильность и интенсивность работы устройства. Фактически, пятифазный двигатель имеет лучшие характеристики по всем основным параметрам устройства, включая драйвер, но в большинстве случаев они попросту не нужны в системе, поскольку ей достаточно и стандартных мощностей. Таким образом пятифазные двигатели имеют свою, строго ограниченную нишу и не получают широкого распространения — перед покупкой стоит проверить описание. 

Синхронный двигатель (СД)

Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.

Устройство

Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.

В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.

Конструктивно СД делятся на два типа по полюсам:

  1. Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
  2. Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.

Конструктивно роторы бывают разными устройством и по конструкции.

В частности, магниты бывают:

  1. Наружной установки.
  2. Встроенные.

Статор условно состоит из двух компонентов:

  1. Кожух.
  2. Сердечник с проводами.

Обмотка статорного механизма бывает двух видов:

  1. Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
  2. Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.

Форма электродвижущей силы электрического синхронного мотора бывает в виде:

  1. Трапеции. Характерна для устройств с явно выраженным полюсом.
  2. Синусоиды. Формируется за счет скоса наконечников на полюсах.

Если говорить в целом, синхронный мотор состоит из следующих элементов:

  • узел с подшипниками;
  • сердечник;
  • втулка;
  • магниты;
  • якорь с обмоткой;
  • втулка;
  • «тарелка» из стали.

Принцип работы

Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.

Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.

Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.

С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.

Сфера применения

Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.

Эта особенность расширяет сферу его применения:

  • энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
  • машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
  • прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.

Как подключить электродвигатель 380В на 220В

Преимущества и недостатки

После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.

Плюсы:

  1. Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
  2. Высокий КПД, достигающий 97-98%.
  3. Повышенная надежность, объясняемая большим воздушным зазором.
  4. Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
  5. Низкая чувствительность к изменению напряжения в сети.

Минусы:

  1. Более сложная конструкция и, соответственно, высокая стоимость изготовления.
  2. Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
  3. Потребность в источнике постоянного тока.
  4. Применение только для механизмов, которым не нужно менять частоту вращения.

Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.

СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В

Применение

На сегодняшний день электродвигатели со спецификацией на переменный ток распространены во всех сферах промышленности и жизнедеятельности. На электростанциях они устанавливаются в качестве генераторов, используются в производственном оборудовании, автомобилестроении и даже бытовой технике. Сегодня в каждом доме можно встретить как минимум одно устройство с электрическим двигателем переменного тока, например, стиральную машину. Причины столь большой популярности заключаются в универсальности, долговечности и легкости обслуживания.

Среди асинхронных электрических машин наибольшее распространение получили устройства с трехфазной спецификацией. Они являются наилучшим вариантом для использования во многих силовых агрегатах, генераторах и высокомощных установках, работа которых связана с необходимостью контроля скорости вращения вала.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Асинхронный однофазный электродвигатель

Если прервать один из трех питающих проводов вращающегося асинхронного трехфазного электродвигателя, то при небольшой нагрузке он будет продолжать работу на одной фазе. В двигателе остается вращающееся поле. Однако при однофазном включении в состоянии покоя такой двигатель не будет работать даже без нагрузки. Если третью фазу обмотки подключить через конденсатор к одному из двух питающих проводов, то трёхфазный двигатель, подсоединенный к сети однофазного тока, начнет работать и его рабочие характеристики будут сходны с характеристиками обычного трехфазного асинхронного двигателя.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: