Устройства плавного пуска УБПВД-ВЦ
Главная
Пример системы безударного пуска на базе УБПВД-ВЦ.
Система безударного пуска 4-х электродвигателей механизмов с «вентиляторной» характеристикой нагрузки состоит из штатных рабочих выключателей Q1…Q4, головных выключателей QF1 и QF2, а также пусковых вакуумных выключателей в шкафах ШКА1 и ШКА2.
Пуск электродвигателя производится под управлением контроллера, расположенного в шкафу ШК в следующей последовательности. При наличии на входе контроллера сигнала готовности агрегата к пуску командой ПУСК с пульта управления (ПУ) инициализируется программа автоматического пуска. Контроллер включает пусковой выключатель QS, соответствующий запускаемому электродвигателю, а затем головной выключатель QF, подключающий устройство УБПВД к той секции шин, к которой после разгона будет подключен запускаемый двигатель. На тиристоры устройства УБПВД подается напряжение, и в запертом состоянии производится их тестирование. При положительном результате теста контроллер разрешает подачу отпирающих импульсов на тиристоры. Угол отпирания тиристоров плавно уменьшается, и на статорных обмотках двигателя начинают расти напряжение и ток.
Ток плавно нарастает до тока трогания (1,3…1,6) номинального тока двигателя, и электродвигатель начинает разгоняться. Если в процессе разгона нагрузка со стороны агрегата увеличивается, то контроллер плавно поднимает ток по линейному закону к концу разгона до величины 2…2,5 номинального. По окончании разгона контроллер включает рабочий выключатель и подключает двигатель на полное напряжение сети. При пуске синхронного электродвигателя подается возбуждение, после чего двигатель втягивается в синхронизм. Затем запираются тиристоры, отключаются головной выключатель QF и пусковой выключатель QS. Система готова к следующему пуску.
Устройство допускает 3 пуска подряд из холодного состояния. Каждый последующий пуск через 10 минут. Устройство УБПВД не только исключает негативные пусковые воздействия на электродвигатель и механизм, но и облегчает работу коммутирующей аппаратуры:
- Включение и отключение пусковых и головных выключателей происходит в бестоковом режиме.
- Рабочий выключатель Q после разгона электродвигателя включает вместо 6-8-кратного пускового тока установившийся ток на номинальной (подсинхронной) скорости двигателя.
Структура условного обозначения
Схема плавного пуска электродвигателей УБПВД-ВЦ тиристорным регулятором напряжения
Однолинейная схема плавного пуска электродвигателей УБПВД-ВЦ
ВТБ – высоковольтные тиристорные блоки QSл – линейный разъединитель QSш – шинный разъединитель ОПН – ограничитель напряжений ТТ – трансформатор тока
Расчет номинальной мощности
Метод эквивалентного тока
Применим для расчета номинальной мощности при обязательном соблюдении во время работы неизменности показателей мощности потерь в обмотках двигателя, складывающейся из постоянной и переменной величин мощности, сопротивлений обмоток ротора и статора, потерь на механическое трение. Зная номинальный коэффициент мощности, показатели эквивалентного тока и номинального напряжения, возможно рассчитать номинальную мощность электродвигателя:
где Iэк – показатель эквивалентного тока,
Uном – номинальное напряжение,
cosϕном – номинальный коэффициент мощности, повышающийся с увеличением мощности и номинальной угловой скорости вращения ротора, а также зависящий от нагрузки. Для большинства электродвигателей составляет 0,8-0,9.
Метод эквивалентного момента
Электродвигатели любого типа имеют пропорциональный произведению тока и величине магнитного потока вращающий момент. Метод эквивалентного момента для расчета номинальной мощности используется в тех случаях, когда условия применяемой нагрузки определяют непосредственно требуемый от двигателя момент, а не ток. Для синхронных и асинхронных машин переменного тока коэффициент мощности cosϕ приближенно принимается за постоянную величину:
где Мвр – значение вращающего момента,
ωном – номинальная угловая скорость двигателя.
Определение номинальной мощности опытным путем
Указанная в паспорте или щитке устройства номинальная мощность будет равна этому значению только при оптимальной нагрузке на вал, определяемой заводом-изготовителем для номинального режима. На что ориентироваться, если по каким-то причинам не сохранился паспорт или стерлись надписи на табличке?
Помогут практические измерения и счетчик электроэнергии:
Дисковый счетчик проводит измерения в кВт∙час. Следует записать последние показания и включить двигатель на 10 минут с точностью до секунды. После остановки электромашины отнять из полученного значения записанные показания и умножить на 6. Полученное число и будет являться активной механической мощностью двигателя.
- Для маломощных двигателей можно подсчитать количество оборотов диска счетчика, для каждого из которых указана, чему равна величина полных оборотов в единицах мощности. Несложные расчеты помогут определить искомую величину мощности.
При использовании этого метода важно правильно подобрать нагрузку, поскольку при ее недостаточности или перегрузке определяемый показатель будет далек от номинальной мощности электродвигателя
Уменьшение напряжения зимой: чем это вызвано?
Иногда автовладельцы сталкиваются с ситуацией, когда в холодное время года параметры АКБ ухудшаются, а автомобиль не удается завести.
Чтобы избежать проблем, предусмотрительные водители снимают источник питания и относят его в тепло.
На самом деле, суть проблем в следующем. При снижении температуры ниже «нуля» плотность электролита также меняется. Следовательно, корректируется и уровень напряжения (как отмечалось выше).
Даже при нормальной зарядке батареи плотность электролита растет, из-за чего увеличивается и U. Следовательно, если АКБ нормально заряжена, бояться ей нечего.
Хуже обстоит ситуация, если бросить на холоде разряженный аккумулятор. В этом случае плотность будет падать и появятся проблемы с пуском мотора. В ряде случаев жидкость может замерзнуть.
Что касается проблем, связанных с пуском АКБ в холодное время года, они возникают из-за торможения химических процессов внутри устройства при снижении температуры ниже нуля.
Это значит, что при нормальном заряде плотность и напряжение АКБ будут достаточными, чтобы пустить двигатель даже зимой.
Зная, какое напряжение должно быть на генераторе автомобиля, можно избежать преждевременного выхода из строя или разряда АКБ, а также своевременно диагностировать неисправность самого генератора.
Пара слов об электролите
Одним из главных показателей, по которым можно судить об исправности батареи, является уровень электролита. Именно от него зависит напряжение источника питания при различных режимах работы.
В процессе разрядки аккумулятора происходит расход кислоты, доля которой в общем объеме жидкости составляет третью часть (35-36%).
Результатом является уменьшение плотности жидкости. Когда производится зарядка батареи, происходит обратный процесс.
В такой ситуации вода расходуется, а кислота, наоборот, образовывается. Как результат, плотность электролита увеличивается.
В обычном состоянии, когда напряжение на АКБ равно 12,7 В, плотность составляет 1,27 г/куб.см. При этом все параметры напрямую зависят друг от друга.
Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
Виды электродвигателей: какой лучше
Описаны только основные виды электродвигателей и даны краткие характеристики, очень сжато описано устройство и принцип работы. Тем не менее, уже можно сделать выводы о том, что идеального решения, причём для всех случаев, просто нет. Есть наиболее подходящее для каждого конкретного случая.
- Асинхронный электродвигатель без частотного регулирования – лучший выбор для насосов.
-
Коллекторный двигатель с его регулируемыми скоростями вне конкуренции для дрелей и пылесосов. И то, в последнее время стали делать с вентильными, они без щеток, что делает работу тише, срок службы дольше, хотя цену выше. Так что, тут, как посмотреть.
Выбирать вид электродвигателя надо под каждый конкретный случай
- Для вентиляторов с длительным режимом работы выбирать приходится между асинхронных и вентильных. Но только если они не слишком мощные. Для мощных важным является возможность разделения на секции, а это проще реализовать у вентильных. И даже на кулерах стали в последнее время использовать вентильные с магнитным ротором.
В общем, чтобы ответить какой лучше, надо рассматривать совокупность условий и характеристик работы
Принимать во внимание достоинства и недостатки, перебирать все виды электродвигателей и только так можно найти оптимальный
Что считается рабочим объемом ДВС
Автомобильный двигатель внутреннего сгорания — сложное инженерное устройство, включающее в себя множественные системы, электронные и механические компоненты, навесные агрегаты и дополнительное оборудование.
Принцип работы заключается в подаче топливовоздушной смеси в камеры сгорания силового агрегата, где эта смесь под давлением поджигается свечами зажигания или накаливания.
В результате горения (которое представляет собой микровзрыв) происходит выделение большого количества энергии, которая движет поршень, находящийся в цилиндре. Поршень воздействует на кривошипно-шатунный механизм, и энергия из поступательной превращается во вращательную. С ее помощью вращается коленчатый вал мотора. Далее крутящий момент от коленвала передается трансмиссии, а от нее уже на ведущую ось (или оси) автомобиля. Полуось вращает колесо — автомобиль едет.
Вышеуказанный процесс цикличен до тех пор, пока водитель не заглушит двигатель либо пока происходит подача топлива, и нет неполадок, препятствующих нормальному функционированию двигателя. Часть цилиндра, в которой происходит процесс горения топлива — это и есть камера сгорания. Ее объем называется рабочим объемом. Чтобы узнать объем двигателя, суммируйте рабочие объемы его камер сгорания (грубо говоря — сумма объемов цилиндров). Для выражения объема двигателя используются литры, а камер сгорания — сантиметры кубические.
Как пример рассмотрим часто встречающийся двухлитровый бензиновый четырехцилиндровый двигатель. Не претендуя на точность, предположим, что каждая его камера сгорания имеет рабочий объем 499 см3. Цилиндра у этого двигателя четыре, суммарный объем камер сгорания равен 1996 см3. Для выражения в литрах округлите эту цифру к ближайшей целой — 2 литра.
Виды двигателей и их устройство
Электрические двигатели переменного тока имеют различное устройство, благодаря которому можно создавать машины с одинаковой частотой вращения ротора относительно магнитного поля статора, и такие машины, где ротор «отстает» от вращающегося поля. По данному принципу эти двигатели разделяют на соответствующие типы: синхронные и асинхронные.
Асинхронные
Основу конструкции асинхронного электродвигателя составляет пара важнейших функциональных частей:
- Статор – блок цилиндрической формы, сделанный из листов стали с пазанми для укладки токопроводящих обмоток, оси которых располагаются под углом 120˚ относительно друг друга. Полюса обмоток уходят на клеммную коробку, где подключаются разными способами, в зависимости от необходимых параметров работы электродвигателя.
- Ротор. В конструкции асинхронных электродвигателей используются роторы двух видов:
- Короткозамкнутый. Называется так, потому что изготавливается из нескольких алюминиевых или медных стержней, накоротко замкнутых с помощью торцевых колец. Эта конструкция, представляющая собой токоповодящую обмотку ротора, называется в электромеханике «беличьей клеткой».
- Фазный. На роторах данного типа устанавливается трехфазная обмотка, похожая на обмотку статора. Чаще всего концы её проводников идут в клеммную площадку, где соединяются «звездой», а свободные концы подключаются к контактным кольцам. Фазный ротор позволяет с помощью щеток добавить в цепь обмотки добавочный резистор, позволяющий изменять сопротивление для уменьшения пусковых токов.
Помимо описанных ключевых элементов асинхронного электродвигателя, в его конструкцию также входит вентилятор для охлаждения обмоток, клеммная коробка и вал, передающий генерируемое вращение на рабочие механизмы оборудования, работа которого обеспечивается данным двигателем.
Работа асинхронных электрических двигателей основывается на законе электромагнитной индукции, утверждающем, что электродвижущая сила может возникнуть лишь в условиях разности скоростей вращения ротора и магнитного поля статора. Таким образом, если бы эти скорости были равны, ЭДС не могла бы появиться, но воздействие на вал таких «тормозящих» факторов, как нагрузка и трение подшипников, всегда создает достаточные для работы условия.
Синхронные
Конструкция синхронных электродвигателей переменного тока несколько отлична от устройства асинхронных аналогов. В этих машинах ротор крутится вокруг своей оси со скоростью, равной скорости вращения магнитного поля статора. Ротор или якорь этих устройств тоже оснащается обмотками, которые одними концами подключены друг к другу, а другими – к вращающемуся коллектору. Контактные площадки на коллекторе смонтированы так, что в определенный момент времени возможна подача питания через графитовые щетки лишь на два противоположных контакта.
Принцип работы синхронных электродвигателей:
- При взаимодействии магнитного потока в обмотке статора с током ротора возникает вращающий момент.
- Направление движения магнитного потока изменяется одновременно с направлением переменного тока, благодаря чему сохраняется вращение выходного вала в одну сторону.
- Настройка нужной частоты вращения осуществляется регулировкой входящего напряжения. Чаще всего, в быстроходном оборудовании, например, перфораторах и пылесосах, эту функцию выполняет реостат.
Чаще всего причинами выхода синхронных электродвигателей из строя является:
- износ графитовых щеток или ослабление прижимной пружины;
- износ подшипников вала;
- загрязнение коллектора (чистится наждачной бумагой или спиртом).
Трехфазный генератор переменного тока
Что такое номинальный ток электродвигателя
Сайт технической поддержки
филиал ЗАО “НПО Севзапспецавтоматика”
Подбор шкафа управления по номинальному току электродвигателя
Номинальный ток шкафа (I ном ) выбирается по току управляемых электродвигателей из расчёта выполнения двух условий:
Условие 1: I ном > I р ;
Условие 2: I ном > I п / K x , где:
I р — рабочий (номинальный) ток электродвигателя, А
I п — пусковой ток электродвигателя, А
К х — коэффициент время-токовой характеристики автоматического выключателя шкафа, принимающий значения:
К х = 5 – для время-токовой характеристики “C”,
К х = 10 – для время-токовых характеристики “D” и “МА”.
Примечание: Автоматические выключатели с характеристикой “C” в шкафах управления двигателями систем противопожарной защиты сейчас практически не используются. Автоматические выключатели с характеристикой “МА” (без теплового расцепителя) используются в шкафах управления исполнительными механизмами систем противодымной защиты (вентиляторами и клапанами). Автоматические выключатели с характеристикой “D” используются в шкафах управления другими двигателями систем противопожарной защиты (насосами и задвижками).
Электродвигатель вентиляторного агрегата имеет номинальный рабочий ток (I р ) = 29,8А и кратность пускового тока (I п / I р ) = 12 (Отсюда пусковой ток I п = 29,8 × 12 = 357,6А).
Для управления вентилятором проектировщик уже выбрал тип шкафа, например ШК1101-ХХ-А2(для использования в составе системы пожарной сигнализации .
Необходимо подобрать для выбранного шкафа исполнение по номинальному току.
По условию 1: I ном > I р ; I ном > 29,8А
В шкафах выбранного типа ШК1101-ХХ-А2 автоматические выключатели имеют время-токовую характеристику “МА” (из паспорта шкафа, раздел «характеристики электропитания»), отсюда К х = 10
По условию 2: I ном > I п / K x ; I ном > 357,6 / 10; I ном > 35,8А. Из условий 1 и 2 следует, что I ном > 35,8А.
Поправка на температуру окружающей среды:
Номинальный ток автоматических выключателей нормируется для температуры внутри оболочки шкафа 30°С. При повышении температуры номинальный ток выключателя снижается, и для неотключения при протекании тока близкого к номинальному необходимо использовать автоматический выключатель с номинальным током бОльшей величины.
Принимаем, что из-за работы аппаратуры температура внутри шкафа может превысить наружную на 5°С. Если максимальная температура в помещении установки шкафа управления не будет превышать 25°С, то поправку на температуру окружающей среды можно не вводить.
Для эксплуатации оборудования при температуре окружающей среды выше 25°С, при расчёте необходимо увеличивать I ном на 1% на каждый градус Цельсия (°С) выше 25°С.
Пусть в нашем случае температура в помещении может достигать 35°С, тогда необходимо увеличить I ном на (35 — 25) = 10%. Отсюда I ном > 35,8А × 1,10; I ном > 39,4А
Примечание:На практике расчёт температурной поправки обычно заменяют использованием коэффициента запаса 15-20%. Точный расчёт возможен только при знании температурных характеристик конкретного применяемого типа автоматического выключателя. Для автоматических выключателей с характеристикой “МА” температурную поправку можно не делать (т.к. нет теплового расцепителя).
По таблице вариантов исполнения из графы номинального тока шкафа ШК1101-ХХ-А2 (также см. гл. 3 паспорта шкафа): …, 20А, 25А, 32А, 40А, 50А, 63А, … выбираем ближайшее большее значение, принимая I ном = 40А.
Значению тока I ном = 40А соответствует вторая цифровая группа 36 в наименовании шкафа. Соответственно, по таблице вариантов исполнения, выбираем исполнение шкафа ШК1101-36-А2
Для автоматизации расчёта номинального тока можно воспользоваться калькулятором
Примечание: Данная методика подбора шкафов по соответствию тока вводного автомата току двигателя, не подходит для подбора шкафов со встроенным блоком питания, для управления приводами постоянного тока, и шкафов со встроенным преобразователем частоты.
Принцип работы двигателя
Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:
- Впуск топлива;
- Сжатие топлива;
- Сгорание;
- Вывод отработанных газов за пределы камеры сгорания.
Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.
Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.
Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.
На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.
Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Статьи. В чем отличие номинальной мощности электрогенератора от максимальной
/ Информация/Статьи/В чем отличие номинальной мощности электрогенератора от максимальной?
Мощность электрогенераторной установки является одной из основных эксплуатационно-технических характеристик, интересующих покупателя в первую очередь.
Именно она отражает способность данной модели электрогенератора обеспечить питание электроприборов в необходимом объеме.
Однако в предоставляемой технической документации производители указывают два значения, относящиеся к мощности выпускаемого оборудования – номинальное и максимальное. Чем же они отличаются, и какое из них имеет наибольшую практическую ценность?
При выборе электрогенератора рекомендуется основываться на показателе номинальной мощности, поскольку именно его величина заявляется производителем как расчетная характеристика на протяжении всего периода эксплуатации. Максимальная мощность – это параметр, допустимый при возникновении пиковых нагрузок, и постоянная работа в таких условиях приводит к чрезмерному износу оборудования и его преждевременному выходу из строя.
Определение необходимой мощности электрогенератора напрямую зависит от максимальной совокупной величины соответствующих параметров каждого из электроприборов, одновременное включение которых возможно в данный момент времени.
И этот показатель ни в коем случае не должен превышать величину номинальной мощности генератора, заявленную производителем. При этом, выбирая электрогенератор, также следует учитывать и возможность увеличения объемов потребляемой электроэнергии в будущем.
Этот резерв позволит подключать к существующей сети дополнительные новые устройства, питание которых обеспечит проверенный и хорошо зарекомендовавший себя генератор.
Выбор генератора по мощности
Как правильно рассчитать этот показатель и на что обратить внимание?
Чтобы было понятней, разберем эту ситуацию на простом примере. Допустим, в нашем пользовании имеются такие бытовые приборы: пылесос, калорифер, морозильник. Мощность этих бытовых приборов составляет соответственно 1 кВт, 2 кВт и 0,3 кВт. Получается, чтобы обеспечить работу этих приборов, нам необходим генератор мощностью не менее 3 кВт. Чтобы понять это, разберемся в таком понятии, как номинальная мощность генератора.
Номинальная, или, как ее еще называют, реальная мощность установки, существенно отличается от максимальной. В технической документации производители чаще всего указывают именно максимальные показатели по мощности для данной модели генератора.
Этот показатель определяется отношением активной мощности к полной.
Пример
Допустим, в нашем распоряжении генератор с показателями мощности в 3 кВА и cos φ, равным 0,8. В таком случае номинальная мощность данной установки будет равна:
3 кВА х 0,8=2,4 (кВт)
Теперь можно понять, почему мощность может указываться в тех или иных единицах измерения, в ваттах (Вт) или Вольт Амперах (ВА).
Некоторые производители, чтобы избавить потребителя от необходимости проведения вычислений, просто указывают в сопроводительной документации оба значения мощности – номинальной и максимальной.
Встречаются также варианты, когда производителем указывается только одна из мощностей и приводится значение коэффициента мощности. Некоторые недобросовестные компании могут скрывать коэффициент мощности от потребителя. Это делается с целью выдать генератор за более мощную, чем на самом деле, установку.
Учет вида нагрузки
Для бытовых электроприборов характерны два вида нагрузки:
Активная (омическая) нагрузка потребляется приборами, которые преобразуют получаемую энергию в тепло. Это электрическая плита, утюг, фен, калориферы и т.д. Реактивную нагрузку потребляют остальные электроприборы, преобразующие в тепло только незначительную часть энергии. Основная часть потребляемой энергии используется с другой целью. Примерами таких приборов могут быть холодильник, пылесос, телевизор, компьютер и т.д.
Технические характеристики
Двигатели серии АИР относятся к асинхронным электрическим агрегатам переменного тока с несколькими ступенями частоты вращения. Количество частот может быть изменено путем переключения обмотки на нужное количество полюсов. Эти механизмы изготавливаются в двух вариантах. В первом случае станина и щиты – чугунные, а во втором – щиты чугунные, а для станины использован алюминиевый сплав.
Технические характеристики, которые представляет таблица, тесно связаны с принципом действия этих устройств. В основе работы двигателей АИР лежит электромагнитное взаимодействие между статором и ротором. Кроме этих двух элементов в конструкцию любого агрегата входят передний и задний щиты подшипников, вентилятор, вводное устройство и кожух. Для всыпной обмотки статора использован медный провод, покрытый эмалью, а ротор представляет собой сердечник, насаженный на вал. Короткозамкнутая обмотка ротора изготовлена из алюминия или его сплавов. Щиты подшипников могут быть чугунными или из алюминиевого сплава.
Многие электродвигатели серии АИР выпускается в основном исполнении, а также в различных модификациях, в соответствии с условиями окружающей среды. У некоторых моделей присутствует повышенный пусковой момент, имеются дополнительные устройства в виде фазного ротора или встроенного электромагнитного тормоза. Довольно часто требуются агрегаты с точными установочными размерами, с высокой и повышенной точностью, с повышенным скольжением и множеством скоростей.
Все эти факторы влияют на размеры электродвигателей АИР, которые существенно различаются из-за конструктивных особенностей. При необходимости выпускаются агрегаты узкоспециального назначения, применяемые в специфических производственных процессах.
Двигатели серии АИР работают при переменном токе напряжением 220, 380 и 660 вольт, с частотой тока в пределах 50-60 Гц.
Общие технические характеристики этих механизмов включают также способ их монтажа. В связи с этим они выпускаются в разных вариантах:
- С лапами и щитами подшипников.
- С лапами, щитами подшипников и фланцем, установленным со стороны привода.
- Без лап, со щитами подшипников и фланцем, установленным со стороны привода.
Маркировка электродвигателей
Подключение асинхронного электродвигателя
Крановые электродвигатели
Тяговый электродвигатель: назначение и применение
Формула КПД электродвигателя
Принцип работы электродвигателя
Высокий стартовый ток – главный недостаток асинхронного электродвигателя
Однако несмотря на множество неоспоримых преимуществ, асинхронные двигатели имеют минусы, среди которых одним из наиболее значительных является достаточно большой пусковой ток электродвигателя данного типа. Особенно заметен этот недостаток в асинхронных устройствах с короткозамкнутым ротором
Такие двигатели следует с осторожностью применять, в тех системах, для которых требуется значительный пусковой момент, который может привести к превышению номинального значения силы тока (Iн)
Для большинства асинхронных электродвигателей допустимо кратковременное превышение значение Iн, которое может произойти в момент пуска. Так, в момент запуска, допускается шестикратное превышение значения номинального тока при условии, что оно будет длиться не более 5 секунд. В случае, если в некотором режиме номинальный ток превышается не более чем в два раза, допускается увеличить время работы устройства в этом режиме до 15 секунд.
КРУТЯЩИЙ МОМЕНТ, МОЩНОСТЬ И ОБОРОТЫ ДВИГАТЕЛЯ: РАЗЛИЧИЯ И ВАЖНОСТЬ
Добрый день, сегодня мы узнаем, что называется крутящим моментом, мощностью и оборотами двигателя автомобиля, чем различаются между собой показатели, а также, какой параметр считается наиболее важным. Кроме того, расскажем про то, каким образом высчитывается показатель мощности силовой установки, который отражается в лошадиных силах, как определяется крутящий момент за единицу времени и чем характеризуются обороты двигателя транспортного средства. В заключении поговорим о том, для чего автовладельцам необходимо знать показатели мощности, крутящего момента и оборотов мотора машины и как влияют данные параметры на эффективность работы силовой установки того или иного транспортного средства. Довольно многих автолюбителей, вот уже который год мучает насущный вопрос, касающийся отличий между такими показателями, как мощность и крутящий момент двигателя автомобиля. В чем же отличия
этихпоказателей мотора ?Что из них важнее ? Большинство из нас привыкли выбирать автомобиль опираясь только на лошадиные силы, а крутящий момент, как правило, не учитывается, но это не всегда правильно. Большое количество водителей порой даже не знают, какое количество оборотов в их машине максимальное. Заметим, что все основные технические характеристики силовой установки своей машины, к которым относятся мощность, крутящий момент и обороты двигателя просто необходимо знать, а также понимать что они означают. А для чего это нужно мы и поговорим в нашей статье.
Сегодня в сети Интернет можно найти большое множество различных понятий и описаний таких показателей, как крутящий момент, мощность и обороты двигателя, но все они довольно сильно запутаны. В нашей статье мы постараемся разобрать данные показатели наиболее доступным языком и использовать наглядные формулы, чтобы кроме слов у нас в понимании отложились наглядные примеры этих достаточно важных параметров любой силовой установки. Справочно заметим, что мощность и крутящий момент являются такими показателями мотора, которые друг без друга в принципе существовать просто не могут. Поэтому данные показатели, в какой то степени даже дополняют друг друга, так как одна характеристика напрямую зависит от второй.
1
.МОЩНОСТЬ ДВИГАТЕЛЯ: ПОНЯТИЕ И КАК ИЗМЕРЯЕТСЯ Мощность любой силовой установки измеряется в лошадиных силах или киловаттах ( Ватты/Вт
). Справочно заметим, что также в Ваттах мы измеряем мощность домашней лампочки накаливания, которая установлена в светильнике.А куда же делись лошадиные силы , могут многие автолюбители? А все довольно просто, исторически так сложилось, что первоначально перевозимые грузы, которые переносили лошади на определенное расстояние сопоставлялись с единицей времени. Затем было установлено, что одна лошадь способна генерировать электрический ток от динамомашины, причем за 1 секунду ею выдавалось около 735 Ватт или 75 килограмм на 1 метр высоты за секунду времени. Таким образом, при переводе Ватт в лошадиные силы получается следующее, что 1 Киловатт равняется 1000 Ваттам, а 1000 Ватт в свою очередь – это 1,36 лошадиной силы. Поэтому 1 киловатт мощности мотора всегда равен 1,36 лошадиной силы.
На сегодняшний день не все автопроизводители указывают мощность силовых установок в лошадиных силах. К примеру немецкие автомобильные производители зачастую указывают мощность в киловаттах. Поэтому, когда мы видим в технических характеристиках автомобиля мощность мотора, прописанную в киловаттах, то чтобы получить привычные лошадиные силы, необходимо просто первую величину поделить на число 1,36
. В том случае, если нужно наоборот из лошадиных сил получить киловатты, то мы просто лошадки умножаем на число1,36 .
Очень важно учитывать тот момент, что мощность бензинового или дизельного двигателя является величиной не постоянной. Так например, если в характеристиках нашего мотора указан показатель в 125 лошадиных сил, а другая силовая установка обладает 115 лошадиными силами, то по логике первая силовая установка должна обогнать по скорости вторую, за счет большей мощности, но это совсем не так
Потому что не всегда в скорости важна мощность мотора, необходимо еще учитывать такой параметр, как крутящий момент двс и расстояние дистанции. Мощность любого двигателя меняется в зависимости от оборотов мотора. Номинальная величина мощности, как правило, указывается при определенных максимальных оборотах силовой установки. Например многие современные машины получают свою номинальную мощность при 5000-6000 оборотов в минуту. Таким образом, например 125 лошадиных сил получаются при 5500 оборотов в минуту, а при тех же 3000 оборотов в минуту, мощность может быть уже почти в 2 раза меньше от максимальной.
От чего зависит срок годности АКБ?
Каждый производитель после изготовления батареи устанавливает гарантийный срок ее эксплуатации.
Кроме этого параметра, существует и фактический период, зависящий от многих факторов — своевременности обслуживания, соблюдения правил эксплуатации, состояния электропроводки и прочих моментов.
Из-за того, что условия обслуживания АКБ отличаются, различается и срок годности изделия.
У автовладельцев, которые эксплуатируют машину только в теплое время года, аккумулятор живет дольше всего. Другое дело, когда автомобиль нужен круглый год, вне зависимости от температуры на улице.
В такой ситуации срок годности АКБ снижается. Это вызвано и тем, что во втором случае водитель может накатать больший километраж.
Также на ресурс аккумулятора влияет:
- Исправность и правильность работы генератора и регулятора напряжения.
- Подключение к электропроводке автомобиля дополнительного оборудования, имеющего большой номинальный ток.
- Режим эксплуатации. Меньше всего «живут» аккумуляторные батареи на такси, которые прохаживают большой километраж в течение года. Кроме того, такие автомобили работают в режиме частого пуска двигателя, что создает нагрузку на АКБ и генератор. При активном применении транспортного средства срок службы источника питания не превышает 1,5 лет.
При обычном режиме эксплуатации, когда автовладелец регулярно проверяет аккумулятор и проводит ТО, ресурс батареи составляет 4-5 лет при общем пробеге за этот период в 60-80 тысяч километров.
Чтобы избежать проблем, желательно периодически проверять напряжение генератора и аккумулятора.
Но упомянутый срок службы не наивысший, ведь при аккуратном обслуживании АКБ может проработать до восьми лет.
Но стоит знать, что рано или поздно замена аккумулятора потребуется, ведь с момента начала эксплуатации рабочие пластины постепенно изнашиваются. Чем больше циклов заряда и разрядки проходит батарея, тем быстрее она выходит из строя.
Практика показывает, что ключевую роль играет генератор, его исправность и текущее напряжение
Вот почему этому аспекту необходимо уделять ключевое внимание