Содержание:
За одну секунду с конвейеров всех автомобильных заводов в мире выезжает приблизительно 2-3 автомобиля, а ежегодный прирост составляет более 70 миллионов новых машин. И 70% от общего количества составляют турбированные двигатели.
Двигатели с турбиной с каждым годом всё больше вытесняют обычные атмосферные моторы. В этом нет ничего удивительного, ведь они имеют ряд существенных преимуществ перед атмосферными ДВС:
- большая мощность и крутящий момент во всем диапазоне оборотов при том же объеме;
- более экономичный режим расхода топлива;
- более стабильная работа на холостом ходу.
Видео: Как устроена турбина
Но есть важное условие. Турбина обязательно должна выдавать необходимое давление воздуха
Динамический наддув
На процессы газообмена оказывает влияние не только установка фаз газораспределения, но и геометрия впускных и выпускных каналов. Движение поршня на такте всасывания при открытии впускного клапана создает волну всасывания, которая отражается от открытого конца впускного трубопровода и возвращается к впускному клапану в виде волны давления. Эти волны давления могут быть использованы Для увеличения массового расхода воздуха на впуске. Кроме геометрии впускного трубопровода интенсивность этого эффекта наддува, основанного на газодинамике, также зависит от величины оборотов двигателя.
Инерционный наддув
В системах инерционного наддува каждый цилиндр снабжен отдельным впускным каналом определенной длины, обычно соединяющимся с общей камерой. По этим впускным каналам волны давления могут распространяться независимо друг от друга (рис. «Принцип инерционного наддува» ). Длины отдельных впускных каналов адаптированы к установке фаз газораспределения таким образом, чтобы в желаемом диапазоне оборотов двигателя за счет волны давления, проходящей через открытый впускной клапан, достигалось увеличение массы заряда.
В то время как длина каналов должна быть адаптирована к диапазону оборотов двигателя, диаметры каналов должны быть согласованы с рабочим объемом цилиндра. В системе впуска, показанной на рисунке «Принцип изменения геометрии впускного трубопровода«, возможно переключение между двумя системами каналов различной длины. Переключающий клапан или заслонка закрывается в нижнем диапазоне оборотов двигателя, и всасываемый воздух поступает в цилиндры через более длинные впускные трубопроводы. При высоких оборотах переключающий клапан открыт, и воздух поступает через короткий впускной трубопровод.
Наддув с использованием специально настроенных впускных каналов (резонансный наддув)
При определенных оборотах двигателя возникает резонанс колебаний газа во впускном трубопроводе, вызванных возвратно поступательным движением поршня, что создает дополнительный эффект наддува.
При таком варианте наддува короткие трубопроводы соединяют группы цилиндров двигателя с резонансными ресиверами с такими же интервалами, как промежутки между вспышками в цилиндрах (рис. «Принцип наддува с использованием специально настроенных впускных каналов» ).
Эти ресиверы сообщаются с атмосферой или общей камерой посредством специально отрегулированных трубок и резонаторов Гельмгольца. Длина и диаметр трубопроводов определяются диапазоном оборотов двигателя, в котором должен возникать эффект дополнительного резонансного наддува (рис. «Повышение коэффициента наполнения цилиндра зарядом при помощи динамического наддува» ).
Впускные трубопроводы с изменяемой геометрией
Поскольку эффект динамического наддува зависит от режима работы (величины оборотов) двигателя, изменяемая геометрия впускного трубопровода позволяет получить практически идеальную кривую крутящего момента. Регулируемые системы могут быть реализованы посредством изменения длины впускных каналов за счет переключения между системами каналов различной длины или диаметра, попеременного перекрытия отдельных каналов в системах с несколькими наборами впускных каналов или переключения между различными впускными объемами. Эти переключения могут осуществляться электрическими или электропневматическими клапанами или заслонками.
Простыми словами: почему турбомоторы все чаще встречаются на автомобилях?
По мере того, как правительства самых автомобилизированных стран мира продолжают бороться за экономию топлива и регулирование выбросов, двигатели с турбонаддувом среднего и малого объема становятся все более распространенными.
Считается, что компактные двигатели с турбонаддувом могут сочетать в себе превосходную топливную экономичность при аккуратном использовании в городском потоке (по крайней мере, на бумаге) и при этом иметь высокую пиковую мощность (как минимум на бумаге) на максимальных оборотах. По этой причине автопроизводители повсеместно начали использовать этот тип моторов для того, чтобы их продукция могла соответствовать все более строгим стандартам по экологичности выбросов и, как прежде, давать клиентам тот же уровень мощности, каким он был раньше, а иногда предлагать даже более высокий.
В этой статье мы кратко опишем, как работает двигатель с турбонаддувом (иногда их также называют «двигатели с принудительной индукцией»), и ответим на распространенные вопросы потребителей, которые рассматривают как вариант покупку турбированных среднеобъемников, но ни разу с ними не сталкивались.
Но прежде сделаем небольшое отступление: в наши дни турбированные двигатели можно обнаружить на всех типах транспортных средств, включая спорткары, кроссоверы, внедорожники и даже пикапы, поэтому мы надеемся, что этот пост вооружит вас полезными базовыми знаниями, которые вам понадобятся при выборе нового или подержанного современного автомобиля.
Расчет по производительности форсунок
Форсунки — это детали-распылители, которые обеспечивают подачу топлива в цилиндры ДВС. Характер работы форсунок напрямую влияет на формат функционирования двигателя, поэтому подсчитать мощность движка можно по производительности форсунок.
Для подсчетов используется следующая сложная формула:
- ПФ — это производительность 1 форсунки. Этот параметр обычно указывается в технической документации к двигателю (хотя в случае нового авто эти сведения можно узнать из бортового компьютера).
- КФ — это количество форсунок. Этот параметр можно также узнать из технической документации либо с помощью бортового компьютера.
- КЗ — коэффициент загруженности форсунок. Для большинства легковых автомобилей этот параметр равен 0,75-0,8.
- ТТ — тип топливной смеси. Для бензина высокой очистки этот коэффициент обычно равен 12-13.
- ТД — это тип двигателя. Для атмосферного движка этот параметр равен 0,4-0,5, для турбодвижка — 0,6-0,7.
Эта методика расчета является достаточно неточной, поскольку формула содержит множество поправочных коэффициентов, многие из которых не имеют точного цифрового выражения. Поэтому реальная мощность может отличаться от формульной на 10-15% (впрочем, это небольшая погрешность).
Примеры решения задач
Задание. Какова мощность (P(t)), развиваемая силой, если она действует на тело, которое имеет массу m и под воздействием приложенной силы движется поступательно. Сила описывается законом: $F(t)=2 t \cdot \bar+3 t^ \bar$
Решение. В качестве основы для решения задачи используем формулу для мощности вида:
Из второго закона Ньютона мы имеем:
$$F=m a \rightarrow a=\frac; v=\int a d t=\int \fracd t=\frac \int F d t(1.2)$$
В выражение (2.2) подставим уравнение, заданное в условии задачи для F(t), имеем:
$$v=\frac \int\left(2 t \cdot \bar+3 t^ \bar\right) d t=\frac\left(t^ \cdot \bar
+t^ \bar\right)(1.3)$$
Подставим выражение для скорости из (1.3) в (1.1), получим:
$$P=\left(2 t \cdot \bar+3 t^ \bar\right) \frac\left(t^ \cdot \bar
+t^ \bar\right)=\frac\left(2 t^+3 t^\right)$$
Ответ. $P=\frac\left(2 t^+3 t^\right)$
Формула мощности не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Какова мгновенная мощность силы тяжести на высоте h/2. если камень массы m падает с высоты h. Сопротивление воздуха не учитывать.
Решение. Сделаем рисунок.
В качестве основы для решения задачи используем формулу для мгновенной мощности вида:
Сила, действующая на тело – сила тяжести. Она направлена по оси Y, выражение для ее проекции на ось Y запишем как:
В начальный момент времени тело имело скорость равную нулю, тогда скорость тела в проекции на ось Y можно вычислить, используя выражение:
Найдем момент времени, в который тело окажется на половине высоты (y=h/2), применим уравнение, которое описывает равноускоренное движение (из начальных условий y=0, v=0):
Используем выражения (2.2), (2.3), (2.4) подставим в (2.1), получим искомую мгновенную мощность силы тяжести на половине пути свободно падающего тела:
Ответ. $P=m \sqrt h>$
Источник
Компрессор или турбина что лучше выбрать для автомобиля: преимущества и недостатки этих агрегатов
В наше время очень актуально увеличивать скоростные показатели своего автомобиля. Наиболее распространённые варианты это установка компрессора или турбины: что лучше пробуем разобраться в этой статье.
Но для начала разберёмся с принципами работы, плюсами и минусами данных улучшений для двигателя.
Принцип работы компрессора
Существуют объёмные нагнетатели, они подают воздух в двигатель равными порциями независимо от скорости, что даёт преимущества на низких оборотах.
Нагнетатель
Компрессоры внешнего сжатия, очень хорошо подходят там, где требуется много воздуха на низких оборотах. Минус, это то, что давления он сам не создаёт и может создать обратный поток. Его сжатие имеет довольно низкий КПД.
Компрессоры внутреннего сжатия довольно хороши на высоких оборотах и имеет намного меньший эффект обратного потока. Из-за высоких требований к изготовлению имеют высокую цену, а при перегреве имеют шанс заклинивания.
Динамические нагнетатели работают при достижении, определённых оборотов, но зато с большой эффективностью.
Компрессоры работают от коленчатого вала двигателя с помощью дополнительного привода. И поэтому обороты компрессора зависят от оборотов двигателя.
Видео: устройство и принцип работы винтового компрессора.
Так, переходим к турбо-наддуву, чтобы определиться, что лучше компрессор или турбина.
Принцип работы турбины
Турбина работает за счёт энергии отработавших газов. Турбокомпрессор — это комбинирование турбины и центробежного компрессора.
Выхлопные газы с большей скоростью вращают колесо турбины на валу, а в другом конце вала находится центробежный насос, который нагнетает больше воздуха в цилиндры.
Чтобы охладить сжатый турбиной воздух, используют дополнительный радиатор — интеркулер.
Недостатки компрессора и турбины
Турбина хорошо подходит для обогащения кислородом топливной смеси. Но всё же имеет свои минусы:
- турбина — это стационарное устройство и требует полную привязку к двигателю;
- на малых оборотах она не даёт большой мощности, а только на больших способна показать всю свою мощь;
- переход с малых оборотов до высоких называется турбо — ямой, чем большую мощность имеет турбина, тем больше будет эффект турбо — ямы.
В наше время уже имеются турбины, отлично работающие на высоких и на низких оборотах двигателя, но и цена у них соответственно приличная. При выборе компрессора или турбины, многие отдают предпочтение турбо-наддуву, независимо от цены.
Что же лучше — компрессор или турбина
С компрессором намного проще при установке и эксплуатации. Работает он на низких и на высоких оборотах. Также он не требует больших усилий или затрат при ремонте, так как в отличие от турбины, компрессор независимый агрегат.
Чтобы настроить турбину, понадобится хороший специалист для настройки под топливную смесь. А что бы настроить компрессор не нужно больших усилий, или каких либо профессиональных знаний, всё настраивается топливными жиклёрами.
Помимо всего, турбо-наддув довольно сильно нагревается, из-за своей особенности, развивать очень высокие обороты.
У приводных нагнетателей (компрессор), давление не зависит от оборотов и поэтому автомобиль очень чётко реагирует на нажатие педали газа, а это довольно ценное качество, когда машина разгоняется. Ещё они очень просты в своей конструкции.
Но есть недостатки и у компрессоров, моторы оборудованные нагнетателями с механическим приводом имеют большой расход топлива и меньший КПД, в сравнении с турбиной.
Также имеются большие различия в цене. Любая мощная турбина популярного производителя будет иметь большую стоимость и будет дорога в обслуживании. И к тому же требуется для её установки, немало дополнительного оборудования. Компрессору же, нужен только дополнительный привод.
Видео: как работает турбина и компрессор.
В любом случае решать вам, что лучше компрессор или турбина, взвесьте все положительные и отрицательные качества, и сделайте правильное решение!
Виды по способу создания давления
Наддув двигателя – задумка теоретически простая. Суть ее сводится к тому, что принудительная закачка позволяет существенно увеличить количество воздуха в цилиндрах по сравнению с объемом, который засасывает сам мотор, соответственно, и топлива подать можно больше. В результате удается повысить мощность силовой установки без изменения объема камер сгорания
Но это в теории все просто, на практике же возникает множество трудностей. Основная проблема сводится к определению, какая конструкция наддува является самой эффективной и надежной.
В целом разработано три типа нагнетателей, различающихся по способу нагнетания воздуха:
- Roots
- Lysholm (механический нагнетатель)
- Центробежный (турбина)
Каждый из них имеет свои конструктивные особенности, достоинства и недостатки.
Roots
Нагнетатель типа Roots изначально был представлен в виде обычного шестеренчатого насоса (что-то схожее с масляным насосом), но со временем конструкция этого наддува сильно изменилась. В современном нагнетателе Roots шестеренки заменены на два ротора, вращающихся разнонаправлено, и установленных в корпусе. Вместо зубьев на роторах сделаны лопастные кулачки, которыми происходит зацепление роторов между собой.
Главной особенностью наддува Roots является способ нагнетания. Давление воздуха создается не в корпусе, а на выходе из него. По сути, лопасти роторов просто захватывают воздух и выталкивают его в выходной канал, ведущий к впускному коллектору.
Устройство и работа нагнетателя Roots
Но у такого нагнетателя есть несколько существенных недостатков – создаваемое им давление ограничено, при этом еще присутствует пульсация воздуха. Но если второй недостаток конструкторы смогли преодолеть (путем придания роторам и выходным каналам особой формы), то проблема ограничения создаваемого давления более серьезна – либо приходится увеличивать скорость вращения роторов, что негативно сказывается на ресурсе нагнетателя, либо создавать несколько ступеней нагнетания, из-за чего устройство становится очень сложным по конструкции.
Lysholm
Наддув двигателя типа Lysholm конструктивно схож с Roots, но у него вместо роторов используются спиралевидные шнеки (как в мясорубке). В такой конструкции создание давления происходит уже в самом нагнетателе, а не на выходе. Суть проста – воздух захватывается шнеками, сжимается в процессе транспортировки шнеками от входного канала на выходной и затем выталкивается. За счет спиралевидной формы процесс подачи воздуха идет непрерывно, поэтому никакой пульсации нет. Такой нагнетатель обеспечивает создание большего давления, чем конструкция Roots, работает бесшумно и на всех режимах мотора.
Нагнетатель типа Lysholm, другое название — винтовой.
Основным недостатком этого наддува является высокая стоимость изготовления.
Центробежный тип
Центробежные нагнетатели – самый сейчас распространенный тип устройства. Он конструктивно проще, чем первые два типа, поскольку рабочий элемент у него один – компрессионное колесо (обычная крыльчатка). Установленная в корпусе эта крыльчатка захватывает воздух входного канала и выталкивает его в выходной.
Центробежный нагнетатель с газотурбинным приводом
Особенность работы этого нагнетателя сводится к тому, что для создания требуемого давления необходимо, чтобы турбинное колесо вращалось с очень большой скоростью. А это в свою очередь сказывается на ресурсе.
Компрессор на атмосферный двигатель
Начнем с того, что установка компрессора (нагнетателя) во впускной системе двигателя позволяет добиться подачи нужного количества воздуха для сжигания большего количества топлива. Если просто, компрессор-устройство, которое способно создать на выходе давление, которое будет больше атмосферного.
С этой задачей справляются как обычные механические нагнетатели, так и турбокомпрессор. При этом главным отличием турбонагнетателя от компрессора является то, что турбокомпрессор раскручивается за счет выхлопных газов, в то время как механический компрессор приводится от коленвала двигателя.
Атмосферный двигатель внутреннего сгорания осуществляет забор воздуха снаружи в тот момент, когда поршень в цилиндре движется вниз и создается разрежение, в результате чего воздух засасывается в камеру сгорания. Количество поступающего воздуха физически ограничено рабочим объемом, который имеет цилиндр и камера сгорания. После этого воздух смешивается с топливом в определенных пропорциях, после чего заряд (топливно-воздушная смесь) сгорает в цилиндрах.
Казалось бы, чтобы увеличить мощность мотора, нужно подать больше топлива, однако на самом деле это не так. Если просто, избыток топлива приведет к тому, что без соответствующего количества воздуха горючее не будет эффективно сгорать. Получается, чтобы сжечь больше топлива, нужно одновременно подать большее количество воздуха.
Если учесть, что объем двигателя не меняется, тогда воздух нужно подавать принудительно под давлением. Это и есть главная задача компрессора. Компрессоры создают давление во впуске, нагнетая воздух в цилиндры. В этом случае остается только впрыснуть больше топлива, после чего такая смесь эффективно горит и отдает энергию поршню.
Что такое наддув?
Турбонагнетатель и нагнетатель предназначены для достижения одной и той же цели: увеличить мощность двигателя, нагнетая воздух в двигатель вашего автомобиля.
Турбокомпрессор использует отработанные выхлопные газы для вращения колеса компрессора и подачи сжатого воздуха в двигатель. Нагнетатель, однако, прикреплен к коленчатому валу вашего двигателя ремнем. Ремень вращает два «винтовых ротора» внутри нагнетателя, которые сжимают воздух и подают его в двигатель. Воздух подается в цилиндры через отверстие внизу короба нагнетателя. Вы можете увидеть, как это работает, в gif ниже:
Компрессор типа Roots
Нагнетатель воздуха типа рутс – это представитель класса объемных нагнетателей. В плане своего устройства такой механический компрессор очень прост и больше всего напоминает обычный масляный шестеренчатый насос. Корпус имеет овальную форму. Внутри него установлены оси, на которых вращаются в противоположные стороны два ротора. Между роторами и корпусом поддерживается специальный зазор. Этот нагнетатель воздуха отличается от всех остальных тем, что сжатие воздуха происходит не в корпусе, а во внешнем трубопроводе. Из-за этого рутсы часто называют “механический компрессор с внешним сжатием”. За счет вращения роторов воздух захватывается и сквозь маленькие зазоры между корпусом и ротором выдавливается в трубопровод под давлением. Однако хоть такая система и имеет поклонников она же и главный минус. Так как нагнетатель воздуха осуществляет сжатие вне своего корпуса он может это осуществлять только до определённых значений, после которых воздух начинает просачиваться в обратную сторону.
Исправить этот момент можно увеличением скорости ротора, но это тоже возможно только в определенных пределах. Механический компрессор типа рутс имеет еще один минус: при просачивании воздуха в трубопровод не под давлением создается турбулентность, благодаря которой воздух нагревается еще больше. Так как температура воздуха и так растет из-за того, что он сжимается, а тут температура еще выше поднимается. Положительными моментами можно назвать заметно меньший шум от работы по сравнению с “улиткой”; и отсутствие характерного им свиста: рутс имеют свою особую тональность. Однако из-за роторного принципа работы наддув сопровождается пульсацией давления. С пульсацией инженерам удалось справиться достаточно быстро – роторам придали спиралевидную форму, а форму входного и выходного отверстия изменили на треугольную. С помощью таких ухищрений удалось добиться равномерной и тихой работы. Еще одним большим плюсом является то, что такой нагнетатель воздуха проявляет свою эффективность уже на малых оборотах коленчатого вала, в отличие от центробежного, что очень положительно влияет на динамику разгона автомобиля.
Механический наддув
В механических системах наддува привод нагнетателя осуществляется непосредственно от двигателя внутреннего сгорания (см. «Нагнетатели» ). При этом нагнетатель и двигатель внутреннего сгорания механически соединены друг с другом. Применяются механические объемные нагнетатели (компрессоры) различных конструкций (нагнетатели Roots, спиральные нагнетатели) и гидрокинетические компрессоры (например, радиальные компрессоры).
До настоящего времени коленчатый вал и вал нагнетателя соединяются с фиксированным передаточным отношением. Для привода нагнетателя могут использоваться механические или электромагнитные муфты. Давление наддува регулируется при помощи перепускного устройства с регулирующей заслонкой (регулятора давления наддува).
Преимущества механического наддува:
- Нагнетатель установлен на холодной стороне двигателя;
- Компоненты нагнетателя не оказывают влияния на работу системы выпуска отработавших газов;
- Нагнетатель мгновенно реагирует на изменение нагрузки.
Недостатки механического наддува:
- Мощность, требуемая для привода нагнетателя, отбирается от полезной мощности двигателя, что вызывает повышение расхода топлива;
- Приемлемый уровень шума может быть достигнут только посредством специальных мер;
- Сравнительно большой объем и вес системы;
- Нагнетатель должен быть установлен на уровне приводного ремня
Устройство системы турбонаддува
Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.
Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.
Составные части устройства турбонаддува:
- корпус компрессора;
- компрессорное колесо;
- вал ротора, или ось;
- корпус турбины;
- турбинное колесо;
- корпус подшипников.
Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.
Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.
Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…
Преимущества турбонаддува
В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.
Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.
Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.
Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.
Недостатки и преимущества механического и газового компрессора
Турбокомпрессор прекрасно подходит для применения с целью обогащения кислородом топлива. Однако и такие схемы обладают своими недостатками:
- турбина представлена в виде стационарного устройства и соответственно есть необходимость в привязке к силовому агрегату транспортного средства;
- на невысоких оборотах мотора, такой компрессор не способен обеспечит большую скорость, а лишь на высоких его работа эффективна;
- при переходе с низких на высокие обороты часто образуется так называемая «турбояма», при этом чем выше мощность турбокомпрессора, тем значительней будет данный эффект.
Стоит отметить, что в настоящее время можно купить турбокомпрессор, который будет отлично справляться со своей основной задачей как на низких, так и на высоких оборотах силового агрегата. Однако их цена достаточно высокая, как на само оборудование, так и на обслуживание. Но несмотря на это многие владельцы отдают предпочтение именно турбокомпрессорам.
Механические нагнетатели воздуха в свою очередь проще в монтаже и обслуживании. Работают такие устройства как на низких, так и на высоких оборотах. Кроме этого они требуют слишком больших временных и финансовых затрат при восстановлении и ремонте. Это объясняется тем, что в отличие от турбокомпрессора, механический нагнетатель является независимым устройством.
Турбина помимо своей дороговизны и сложности в установке, также довольно требовательна к качеству и техническим характеристикам используемой топливной смеси.
У механических нагнетателей воздуха есть существенная проблема – достаточно большой расход горючего, при относительно невысоком коэффициенте полезного действия. Но при этом они проще в конструкционном плане и в обслуживании.
При этом выбор той или иной установки зависит только от водителя и его пожеланий, а также изначальных характеристик машины.
Что в итоге
Помните, в начале статьи мы говорили о том, что доля турбомоторов на рынке в последнее время заметно возросла. Да, это так, но исключительно благодаря турбодизельным агрегатам. Практически любой современный дизельный двигатель сегодня оборудован турбонаддувом. Дело в том, что именно турбина позволяет дизельному мотору обеспечить достойные эксплуатационные характеристики в сочетании с высокой топливной экономичностью. По этой причине турбодизели пользуются огромной популярностью.
Однако, ситуация с турбобензиновыми агрегатами несколько иная. Подавляющее большинство производителей продолжают выпускать модели в сегментах от «бюджет» до «премиум» с простым атмосферным двигателем. Только в отдельных случаях в линейку добавляются турбированные бензиновые версии. Что касается стран СНГ, авто с турбонаддувом на бензине продолжают заметно уступать машинам с атмосферными бензиновыми ДВС по общему количеству на дорогах. Причин для этого много, начиная от низкого спроса в результате высокой начальной стоимости «надувных» бензиновых авто и заканчивая политикой автодилеров. Последние стараются избавить себя от гарантийных обязательств перед потребителем в случае возникновения проблем с более сложной технически турбированной бензиновой машиной.
Другими словами, турбобензиновые версии завозятся намного реже, так как продавцы учитывают низкое качество горючего и недостаточное количество квалифицированных технических специалистов по ремонту и обслуживанию таких авто на территории СНГ. Добавим, что подавляющее большинство турбированных бензиновых автомобилей на отечественных дорогах представлены моделями немецкого концерна WAG (Audi, Volkswagen, Skoda и т.д.).
Подводя итоги, ответим на еще один важный вопрос. Многие автолюбители интересуются, стоит ли покупать бензиновый автомобиль с турбиной. Если вы присматриваете новую машину, планируете проездить на ней условные 3-5 лет или 100-150 тыс. км, тогда почему бы и нет. Только будьте готовы изначально переплатить за более «продвинутый» мотор и с самого начала приучите себя к мысли, что такому авто требуется частое плановое обслуживание. При этом крайне желательно выполнять регламентные работы и ремонтировать машину в официальном сервисе со всеми вытекающими допрасходами.
Если же вы хотите приобрести подержанный турбированный автомобиль, в таком случае нужно более чем основательно подумать. В случае с дизелем будет необходима глубокая диагностика состояние самого ДВС и готовность заменить изношенную турбину. Когда речь заходит о бензиновых версиях, тогда нашим ответом будет практически однозначное «нет». Дело в том, что актуальная ситуация на рынке турбобензиновых автомобилей б/у достаточно сложная.
Всегда помните о небольшом ресурсе турбины
В том случае, если на конкретной модели их установлено сразу две или более, сумма ремонта заметно возрастает.
Обращайте внимание на пробег и предыдущих владельцев. Зачастую турбоавтомобили берут «гонщики» или амбициозная молодежь
Если первые целенаправленно «укатывают» мощную машину, вторые, как правило, попросту не обслуживают такой автомобиль должным образом и достаточно небрежно его эксплуатируют.
В обоих случаях получается целесообразнее продать машину с пробегом 100-150 тыс. км. другому владельцу по бросовой цене, чем ремонтировать или менять высокотехнологичный турбированный двигатель. То же самое вполне справедливо и для турбированных малолитражек, например, с рабочим объемом 1.2 литра. Моторы данного типа и вовсе считаются «одноразовыми», так как имеют относительно небольшой ресурс около 150-200 тыс. км. и плохо поддаются серьезному ремонту.