Неполадки двигателя
Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:
Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:
- У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
- У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
- Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
- Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.
Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:
- Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
- Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
- В цилиндре имеются повреждения.
Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.
Регулярное техническое обслуживание может помочь избежать ремонта
Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:
- При износе свечи зажигания или ее провода может наблюдаться слабая искра.
- При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
- Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.
Могут возникнуть и другие неполадки. Например:
- Если аккумулятор разряжен, Вы также не сможете завести двигатель.
- Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
- Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
- Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
- Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
- В исправно работающем двигателе все эти факторы находятся в допустимых пределах.
Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.
Как определить мощность?
Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.
По габаритным размерам
Какие размеры необходимо замерить:
- Длина, ширина, высота корпуса
- Расстояние от центра вала до пола
- Длина и диаметр вала
- Крепежные размеры по лапам (фланцу)
По диаметру вала
Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.
Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.
Мощность электродвигателя Р, кВт | Диаметр вала, мм | |||
3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | |
1,5 | 22 | 22 | 24 | 28 |
2,2 | 24 | 28 | 32 | |
3 | 24 | 32 | ||
4 | 28 | 28 | 38 | |
5,5 | 32 | 38 | ||
7,5 | 32 | 38 | 48 | |
11 | 38 | 48 | ||
15 | 42 | 48 | 55 | |
18,5 | 55 | 60 | ||
22 | 48 | 55 | 60 | |
30 | 65 | |||
37 | 55 | 60 | 65 | 75 |
45 | 75 | 75 | ||
55 | 65 | 80 | ||
75 | 65 | 75 | 80 | |
90 | 90 | |||
110 | 70 | 80 | 90 | |
132 | 100 | |||
160 | 75 | 90 | 100 | |
200 | ||||
250 | 85 | 100 | ||
315 | — |
По показанию счетчика
Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.
Для измерения мощности по показанию счетчика нужно:
- Подключить мотор и дать ему поработать в течении 6 минут.
- Замеры счетчика умножить на 10 – получаем точную мощность электромотора.
Расчет мощности по току
Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.
- P – мощность электродвигателя;
- U – напряжение;
- Ia – ток 1 фазы;
- Ib – 2 фазы;
- Ic – 3 фазы.
Современное обозначение и расшифровка параметров электродвигателей
Маркировка имеет несколько основных позиций:
- марка (тип) электродвигателей;
- вариант исполнения;
- рабочая длина оси вращения;
- монтажные размеры крепления;
- длина сердечника;
- число пар полюсов;
- модификация конструкции;
- климатическое исполнение.
Ниже приведена расшифровка обозначений современных двигателей.
Ниже вы видите пример полной маркировки асинхронных двигателей и его расшифровка.
Также указывается и степень защиты электродвигателя от пыли и влаги по классу IP, цифрами от 0 до 8. Здесь первая цифра — это защита от пыли, а вторая — от влаги.
При этом в наименовании указывается монтажное исполнение. По коду монтажного исполнения можно определить, как производится крепление двигателей – на лапах или с помощью фланца. Например, IM 1081 говорит о креплении на лапах, и о том, что возможна установка валом вверх, вниз или горизонтально.
Для электропривода во взрывозащищенном исполнении в пакете сопроводительных документов должен быть сертификат, в котором указана маркировка по степени взрывозащиты, по её виду и сфере применения. Также и в маркировки двигателя если вначале указана буква В – он взрывозащищенный, например ВА07А(М)-450-710.
При этом обозначение двигателей постоянного тока отличается от переменного и имеет такой вид, как показано на рисунке.
На ниже приведенном рисунке представлена информация о тяговых электродвигателях, смонтированных на кранах.
Аналогичные данные размещаются на шильдиках электродвигателей.
Информация на табличке говорит, что:
- АИР – тип асинхронной машины;
- 80 – длина вала;
- А-монтажный размер;
- 4-количество полюсов;
- У- предназначен для работы в умеренном климате;
- 3-устанавливается в закрытом помещении.
Мощность 1,1 кВт, частота вращения 1420 об/мин. Может работать от переменного тока напряжением 220 или 380 вольт при включении обмоток треугольником или звездой.
Ток потребления соответственно будет 4,9/2,8А. Степень защиты IP54. Произведен в республике Беларусь.
Драйверы TI для BLDC
Драйверы TI для бесколлекторных двигателей, или BLDC, могут включать интегрированный силовой мост или использовать внешние силовые транзисторы. Схема формирования 3-фазных сигналов управления также может быть внешней или встроенной.
Семейство драйверов для управления бесколлекторными электродвигателями включает модели c разным принципом управления и с различным крутящим моментом. Эти драйверы, обеспечивающие разные уровни шума при управлении BDLС, идеально подойдут для использования в промышленном оборудовании, автомобильных системах и другой технике. Чтобы гарантировать надежную эксплуатацию электродвигателей, драйверы обеспечивают всеобъемлющий набор защит от превышения тока, напряжения и температуры. На рисунке 18 представлены лишь некоторые из 3-фазных драйверов для BLDC в обширном и постоянно пополняющемся модельном ряду компании TI.
Рис. 18. Драйверы TI для управления бесколлекторными двигателями
Для контроля текущего положения вращающегося ротора могут использоваться внешние датчики разных типов или схема управления с определением позиции ротора по величине противо-ЭДС (Back Electromotive Force, BEMF).
Управление может выполняться с помощью ШИМ, аналоговых сигналов или через стандартные цифровые интерфейсы. Наборы настраиваемых параметров для управления вращением могут храниться во внутренней энергонезависимой памяти.
На рисунке 19 представлен работающий в широком диапазоне температур 40…125°C интеллектуальный драйвер для BLDC со встроенными силовыми ключами на полевых транзисторах, с сопротивлением открытого канала лишь 250 мОм. При диапазоне рабочих напряжений 8…28 В драйвер может обеспечивать номинальный ток 2 А и пиковый ток 3 А.
Рис. 19. Блок-схема драйвера DRV10983
Драйвер не требует внешнего датчика для контроля положения ротора, но может использовать внешний резистор для контроля потребляемой двигателем мощности. DRV10983 отличается незначительным энергопотреблением, составляющим всего 3 мА, в дежурном режиме. А в модели DRV10983Z этот показатель доведен до уровня 180 мкА.
Встроенный интерфейс I2C обеспечивает диагностику и настройку, доступ к регистрам управления работой логической схемы и хранящимся в памяти EEPROM рабочим профилям драйвера.
Расширенный комплект защитных функций обеспечивает остановку двигателя в случае превышения тока и понижения напряжения. Предусмотрено ограничение входного напряжения. Защита по превышению тока работает без использования внешнего резистора. Методы использования защиты настраиваются через специальные регистры.
Самые распространенные виды двигателей
- Оппозитный двигатель. В нем поршни двигаются по обеим сторонам коленчатого вала в горизонтальном направлении вправо и влево. Автомобили с таким двигателем движутся более плавно. Создаваемые поршнями крутящие моменты компенсируют друг друга, значительно уменьшая вибрацию.
- Рядный двигатель. Все его цилиндры расположены в одной плоскости рядом друг с другом. Конструкция довольна проста. Такие двигатели отличаются следующими показателями: имеют высокую стабильность, высокую характеристику крутящего момента на низких оборотах, меньший размер и низкий расход топлива.
- V-образный двигатель. У него все цилиндры разделяются на две группы друг напротив друга. Мотор образует плоскость под углом. V-образные двигатели отличаются небольшими размерами по длине и высоте.
- Квазитурбинный двигатель. Является модифицированным двигателем, основанным на роторном силовом агрегате. Он использует цепной ротор, состоящий из четырех частей. Такой двигатель обладает небольшим размером, высоким крутящим моментом и высокой мощностью. Но они не используются ни на одном автомобиле в настоящий момент.
- Роторный двигатель. Его внутреннее пространство разделено на три рабочие камеры. Во время работы постоянно изменяется объем рабочих камер. Также роторный двигатель имеет все те же четыре такта: впуск, сжатие, сгорание и выпуск. Стоимость, ремонт и обслуживание такого агрегата существенно отличаются в большую сторону. По своим характеристикам двигатель не показывает особых преимуществ перед обычными.
- Green Steam двигатель — эффективный, простой и экономичный. Его мотор преобразовывает избыточное тепло в водяной пар, приводящий в движение силовой агрегат. Такой мотор используют для воздушных насосов, водяных насосов, генераторов, кондиционеров.
- Двигатель Стирлинга. Это двигатель внешнего сгорания. Его периодичный нагрев и охлаждение изменяют давление, вследствие чего образуется энергия для работы. Он отлично подходит для преобразования тепла в электроэнергию.
- Радиальный двигатель или звездообразный. Это поршневой двигатель, в котором вокруг коленчатого вала расположены цилиндры. Преимущественно используется в самолетах.
Что такое брно электродвигателя?
Сегодня термин считается устаревшим и встречается редко. Но все же брно (барно) электродвигателя будет расшифровываться так – блок распределения начал обмоток. Это считается более правильной расшифровкой. Все из-за того, что подобным термином обозначают клеммную коробку электродвигателя с крышкой, в которой происходит распределение концов обмоток.
Другая расшифровка гласит, что брно двигателя, происходит от слова борно, в альтернативном значении – борновая коробка. Такое мнение основывается на определении в энциклопедическом словаре Брокгауза и Ефрона. В нем термин будет расшифровываться так: борны (клеммы) – медные зажимы для закрепления проводников электротока, располагающиеся на приборах и динамоэлектрических машинах.
Назначение БРНО электродвигателя
Электродвигатель, как и любой мотор, является главным звеном машины, поэтому важно позаботиться о правильном и безопасном подключении контактов. Само барно представляет собой клеммную коробку, располагающуюся на электромоторе, в которой происходит распределение выводов концов обмоток статора и ротора в асинхронный электродвигатель
При проведении необходимых манипуляций в блоке распределения, каждый пользователь должен запомнить, что крышка брно снимается очень аккуратно. Так как она является средством защиты от удара электротоком. При поломке коробка докупается отдельно.
Контакты внутри коробки барно крепятся специальными болтами, на корпусе или колпаке располагается рисунок, на котором указана точная расшифровка характеристик. Такой рисунок оформляется по-разному, в зависимости от того, в каком регионе был куплен мотор.
Чтобы расшифровать характеристики, которые должны располагаться на табличке, требуется:
При помощи амперметра измерить холостой ток мотора
Полученные сведения важно использовать при подборе соответствующего электродвигателя.
Измерив габариты мотора (длину вала, диаметр, размеры крепежей), также сокращается круг поиска подходящего двигателя.
Виды схем подключения обмоток в БРНО к сети 380 Вольт
«Треугольник». Подключение подобным образом приводит к поломке в связи с резким нагревом обмоток (это определяется по температуре крышки клеммы). Однако подобный вариант подсоединения позволяет выжать максимальную мощность из двигателя. При указанном подключении обмотки подпитываются от фаз, на которые идет распределение напряжения в 380 Вольт.
«Звезда». Такое подсоединение возможно при подаче на первые концы обмоток фазного напряжения. Вторые концы собираются в одной точке, что создает в ней нуль, при этом напряжение в каждой из обмоток равняется 220 Вольт. Считается самым распространенным видом подключения. В отличие от треугольника, «Звезда» обеспечивает менее сильный, но плавный старт двигателя.
«Комбинированный». Объединение двух других способов для использования максимальной мощности при максимальной плавности. Достигается путем использования магнитных пускателей. В таком случае во время запуска электродвигателя сначала запускается «Звезда», и с этого момента начинается отсчет при вхождении двигателя в рабочий режим, и тип подачи тока переключается в «Треугольник». Однако электродвигатель это не защищает от возможных перегревов и поломок.
Существуют и менее распространенные способы распределения схем подключения, которые требуется указать:
- При использовании асинхронного трехфазного мотора для подключения к однофазной сети в 220 Вольт, используются соответствующие конденсаторы. Схема подключения при этом «Треугольник».
- Также «Треугольником» подключаются европейские электромоторы, работающие от 400 до 700 Вольт.
Для того чтобы изменить направление вращения лопастей электродвигателя, достаточно переподключить две фазы. Требуется использовать магнитные пускатели, подключенные к сети с блокираторами контактов от стартового включателя. После старта напряжение проходит через замкнутые контакты одного пускателя, на обмотку другого и обратно. Тем самым происходит реверс работы мотора.
БРНО уже в сборе совместно с электромотором, возможно купить в специализированных магазинах, занимающихся торговлей электрических инструментов и динамоэлектрических машин.
Устройство электродвигателя | Полезные статьи — Кабель.РФ
Асинхронный электродвигатель состоит из следующих конструктивных элементов:
• ротор, состоящий из сердечника из специальной электротехнической стали и короткозамкнутой обмотки;
• статор, который представлен в виде сердечника из электротехнической стали и обмотки из эмалированных проводов;
• корпус, чаще всего выполняемый из чугуна, поскольку он обладает износоустойчивостью и повышенной сопротивляемостью агрессивным средам. Для улучшения теплового баланса электродвигателя корпус отливается совместно с охлаждающими ребрами.
Также конструкция электродвигателя включает такие элементы:
• подшипники;
• подшипниковые щиты, обеспечивающие защиту от деформаций подшипникового узла в процессе эксплуатации;
• вентилятор для поддержания низкой рабочей температуры;
• кожух вентилятора;
• рым-болты, упрощающие погрузочно-разгрузочные работы;
• клеммная коробка, в которой установлены клеммы с подключенными концами обмоток статора. Клеммная коробка однофазного электродвигателя предусматривает установку пускового кондесатора. Также предусмотрено одно или два резьбовых отверстия для сальников, через которые прокладываются питающие кабели;
• пусковой конденсатор, который может устанавливаться в клеммной коробке однофазного электродвигателя или вне ее. В трехфазных двигателях отсутствует;
• лапы, обеспечивающие более низкий уровень вибрации;
• шильдик, на котором обозначены основные характеристики двигателя.
Первоначально необходимо установить перемычки в зависимости от напряжения питающей сети. Перемычки должны устанавливаться согласно схемам, нанесенным на внутреннюю сторону крышки клеммной коробки:
• для напряжения 380 В обмотки статора соединяются «звездой», которая на схеме обозначается значком Y.
Подключение жил кабеля должно производиться в следующей последовательности:
• жила с изоляцией серого цвета (фаза L1) — клемма «U1»;
• жила коричневого цвета (фаза L2) — клемма «V1»;
• жила черного цвета (фаза L3) — клемма «W1»;
• жила желто-зеленого цвета (PE) — болт с обозначением заземления .
Принцип действия электродвигателя заключается в следующем: после подачи напряжения на клеммы электродвигателя ток протекает через выводные концы на обмотки статора, и в них начинает генерироваться вращающееся магнитное поле.
На ротор, помещенный в статор, начинает воздействовать электромагнитная индукция, тем самым заставляя его вращаться против часовой стрелки.
• жила с изоляцией серого цвета (фаза L1) — клемма «U1»;
• жила коричневого цвета (фаза L2) — клемма «W1»;
• жила черного цвета (фаза L3) — клемма «V1»;
• жила желто-зеленого цвета (PE) — болт с обозначением заземления .
Мы рассказали об устройстве и принципе работы асинхронного электродвигателя. На нашем канале вы также можете посмотреть видео о том, как устроен электродвигатель. В данном видео также показаны принципы работы электродвигателя.
Техническая версия происхождения названия
По поводу происхождения этого термина, существует две версии, каждая из которых вполне правдоподобна. Согласно первой, наиболее распространенной, брно – аббревиатура, расшифровывающаяся как «блок расключения (или распределения) начал обмоток». Такая расшифровка выглядит вполне приемлемой, так как термином «брно двигателя», обозначается клеммная коробка, установленная на его корпусе, и в ней действительно соединяются определенным образом (расключаются) выводы концов обмоток электродвигателя.
Возможно, что причиной появления столь странного для русского языка названия, стало чрезмерное увлечение аббревиатурами в 20 30 х годах, когда и происходила «электрификация всей страны». Название «ГОЭЛРО», кстати, тоже аббревиатура – «Государственный план электрификации России».
Классификация электродвигателей
Вращающийся электродвигатель | ||||
---|---|---|---|---|
Само коммутируемый | Внешне коммутируемый | |||
С механической коммутацией (коллекторный) | С электронной коммутацией1 (вентильный2, 3) | Асинхронный электродвигатель | Синхронный электродвигатель | |
Переменного тока | Постоянного тока | Переменного тока4 | Переменного тока | |
|
|
|
|
|
Простая электроника | Выпрямители,транзисторы | Более сложнаяэлектроника | Сложная электроника (ЧП) |
Примечание:
- Указанная категория не представляет отдельный класс электродвигателей, так как устройства, входящие в рассматриваемую категорию (БДПТ, ВРД), являются комбинацией бесколлекторного двигателя, электрического преобразователя (инвертора) и, в некоторых случаях, — датчика положения ротора. В данных устройствах электрический преобразователь, в виду его невысокой сложности и небольших габаритов, обычно интегрирован в электродвигатель.
- Вентильный двигатель может быть определен как электрический двигатель, имеющий датчик положения ротора, управляющий полупроводниковым преобразователем, осуществляющим согласованную коммутацию обмотки якоря .
- Вентильный электродвигатель постоянного тока — электродвигатель постоянного тока, вентильное коммутирующее устройство которого представляет собой инвертор, управляемый либо по положению ротора, либо по фазе напряжения на обмотки якоря, либо по положению магнитного поля .
- Электродвигатели используемые в БДПТ и ВРД являются двигателями переменного тока, при этом за счет наличия в данных устройствах электрического преобразователя они подключаются к сети постоянного тока.
- Шаговый двигатель не является отдельным классом двигателя. Конструктивно он представляет из себя СДПМ, СРД или гибридный СРД-ПМ.
Аббревиатура:
- КДПТ — коллекторный двигатель постоянного тока
- БДПТ — бесколлекторный двигатель постоянного тока
- ЭП — электрический преобразователь
- ДПР — датчик положения ротора
- ВРД — вентильный реактивный двигатель
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СДПМП —
- СДПМВ —
- СРД — синхронный реактивный двигатель
- ПМ — постоянные магниты
- ЧП — частотный преобразователь
БРНО, расшифровка
Главная » Электрика на даче.
Когда в литературе по электротехнике или на профильных форумах встречаются такие термины, как «брно электродвигателя», расшифровка становится увлекательным экскурсом в историю развития электротехники. Сразу надо оговориться, что сейчас этот термин используется крайне редко. Услышать его можно разве что от пожилых электриков старой школы, которые козыряют этим словом, заранее зная, что их вряд ли поймут те, к кому они обращаются. Зато это дает им возможность «поучить молодежь», а заодно устроить внеплановый перекур.
Техническая версия происхождения названия
По поводу происхождения этого термина, существует две версии, каждая из которых вполне правдоподобна. Согласно первой, наиболее распространенной, брно – аббревиатура, расшифровывающаяся как «блок расключения (или распределения) начал обмоток». Такая расшифровка выглядит вполне приемлемой, так как термином «брно двигателя», обозначается клеммная коробка, установленная на его корпусе, и в ней действительно соединяются определенным образом (расключаются) выводы концов обмоток электродвигателя.
Возможно, что причиной появления столь странного для русского языка названия, стало чрезмерное увлечение аббревиатурами в 20 30 х годах, когда и происходила «электрификация всей страны». Название «ГОЭЛРО», кстати, тоже аббревиатура – «Государственный план электрификации России».
Историко-лингвистическая версия
По второй версии, термин произошел от названия «борн или борны». Вот что по этому поводу говорит словарь Брокгауза и Ефрона: «Борны (иначе называемые клеммами) — в электротехнике, означают на динамоэлектрических машинах и других электрических приборах медные зажимы для закрепления проводов (проводников, проволок)». Если за основную принять эту версию, то становится понятным и другие произношения названия клеммной коробки – «барно электродвигателя», или «борновая коробка».
Назначение брно
Итак, с этимологией все неопределенно, зато с электротехникой все просто и понятно. Брно электродвигателя, это клеммная коробка, в которой производится соединение выводов обмоток асинхронного электродвигателя. Способ соединения этих выводов, определят схему, по которой будет подключаться двигатель – звезда или треугольник. Выбор схемы включения зависит от конструкции двигателя и напряжения питающей сети. Конструктивно, выпускающиеся в настоящее время отечественные двигатели, рассчитаны на подключение к трехфазной сети 220/380 В по схеме «звезда». Если рассмотреть все варианты, получим следующее:
- Сеть 127/220 В (стандарт применявшийся в СССР до 60-х годов и почти не сохранившийся) – современные двигатели подключаются треугольником;
- Сеть 220/380 (230/400) В – номинальное подключение – звездой;
- Электромоторы 400/690 В (выпускаются в Западной Европе) – к нашим сетям подключаются только треугольником;
- Однофазная сеть 220 В – при подключении трехфазного асинхронного электродвигателя к однофазной сети, с использованием конденсаторов, обмотки соединяются треугольником.
В редких случаях, применятся комбинированное подключение к сети 220/380 В, когда во время пуска, для уменьшения пусковых токов, двигатель включается звездой, а после старта и набора оборотов – переключается на треугольник. В этом случае концы обмоток выводятся в шкаф управления и брно не используется.
Независимо от происхождения термина «брно», или его вариантов «барно» и «борн», – речь идет о клеммной коробке электродвигателя, в которой коммутируются концы обмоток. Как видно из приведенного выше списка вариантов подключений, такие переключения необходимы при эксплуатации электродвигателей в различных режимах.
- Аварийное освещение
- Электросчетчики для двух или трех фаз отличаются!
Восстановление маркировки обмоток
Если точнее, маркировка обмоток нужна только для определения направления намотки катушек обмотки. Конец и начало обмотки обозначают только с этой целью. Дело в том, что при включении обмотки в работу в ней начинают возникать вихревые токи, которые движутся по направлению «от начала к концу». Если обмотки включить по принципу «начало с началом, конец с концом», то токи суммируются, обмотки превратятся в один большой резистор и возникнет огромный суммарный ток. Двигатель начнет сильно гудеть и не будет вращаться. Очень быстро начнут нагреваться обмотки, и двигатель сгорит. Причем, вполне возможно, вспыхнет настоящее пламя оранжево-синего цвета с очень вредным и неприятным запахом.
Существует способ определения концов и начал обмоток.
Весь этот процесс очень хорошо показан на видео. Автор этого видео использовал для проверки сетевое напряжения в 220 Вольт, что я крайне не рекомендую делать. Используйте понижающие трансформаторы, либо автотрансформатор.