Номинальная мощность двигателя внутреннего сгорания это

Типы двигателей

Электродвигатели постоянного и переменного тока

В зависимости от используемого электрического тока двигатели делятся на две группы:

  • приводы постоянного тока;
  • приводы переменного тока.

Электродвигатели постоянного тока сегодня применяются не так часто, как раньше. Их практически вытеснили асинхронные двигатели с короткозамкнутым ротором.

Главный недостаток электродвигателей постоянного тока — возможность эксплуатации исключительно при наличии источника постоянного тока или преобразователя переменного напряжения в постоянный ток. В современном промышленном производстве обеспечение данного условия требует дополнительных финансовых затрат.

Тем не менее, при существенных недостатках этот тип двигателей отличается высоким пусковым моментом и стабильной работой в условиях больших перегрузок. Приводы данного типа чаще всего применяются в металлургии и станкостроении, устанавливаются на электротранспорт.

Принцип работы электродвигателей переменного тока построен на электромагнитной индукции, возникающей в процессе движения проводящей среды в магнитном поле. Для создания магнитного поля используются обмотки, обтекаемые токами, либо постоянные магниты.

Электродвигатели переменного тока подразделяются на синхронные и асинхронные. У каждой подгруппы есть свои конструктивные и эксплуатационные особенности.

Синхронные электродвигатели

Синхронные двигатели — оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок — до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Потребители электроэнергии в доме

В постановлении Правительства РФ №334 «О совершенствовании порядка технического присоединения потребителей к электрическим сетям» от 21.04.2009 года сказано, что частное лицо может подключить к своему дому до 15 кВт. Исходя из этой цифры будем делать расчет, а хватит нам сколько киловатт для дома. Чтобы провести расчет нужно знать сколько электроэнергии потребляет каждый электроприбор в доме.

Таблица мощности бытовых электроприборов

В таблице мощности бытовых электроприборов указаны приблизительные цифры потребления электроэнергии. Расход энергии зависит от мощности приборов и частоты их использования.

Электрический прибор Расход мощности, Вт
Бытовая техника
Электрический чайник 900-2200
Кофемашина 1000-1200
Тостер 700-1500
Посудомоечная машина 1800–2750
Электрическая плита 1900–4500
Микроволновка 800–1200
Электрическая мясорубка 700–1500
Холодильник 300–800
Радио 20–50
Телевизор 70–350
Музыкальный центр 200–500
Компьютер 300–600
Духовка 1100–2500
Электрическая лампа 10–150
Утюг 700–1700
Очиститель воздуха 50–300
Обогреватели 1000–2500
Пылесос 500–2100
Бойлер 1100–2000
Проточный водонагреватель 4000–6500
Фен 500–2100
Машина стиральная 1800–2700
Кондиционер 1400–3100
Вентилятор 20–200
Электроинструменты
Дрель 500–1800
Перфоратор 700–2200
Пила дисковая 700–1900
Рубанок электрический 500– 900
Лобзик электрический 350– 750
Машина шлифовочная 900–2200
Циркулярная пила 850–1600

Давайте сделаем небольшой расчет на основе данных таблицы потребляемой мощность бытовых электроприборов. Например, в нашем доме будет минимальный набор электроприборов: освещение (150 Вт), холодильник (500 Вт), микроволновка (1000 Вт), стиральная машинка (2000 Вт), телевизор (200 Вт), компьютер (500 Вт), утюг (1200 Вт), пылесос (1200 Вт), посудомоечная машина (2000 Вт). В сумме эти приборы будут потреблять 8750 Вт, а учитывая то, что эти приборы разом включаться практически никогда не будут, полученную мощность можно разделить пополам.

Классы энергопотребления

В зависимости от вида и конструктивных особенностей нагревательных элементов, энергопотребление кухонной электроплиты может варьироваться в большую или меньшую сторону. Производители бытовой техники присваивают своим моделям определенный класс энергопотребления, который указывает, насколько данная модель экономно расходует ресурсы.

Классы маркируют литерами от «А» до «G». Наиболее экономичные электроприборы имеют класс энергопотребления «А»; «А+»; «А++»; «А+++». На маркировке данные литеры помечены зеленым цветом. Чем более холодный оттенок зеленого цвета, тем быстрее достигается необходимая температура в рабочей зоне плиты.

Что такое расчетная мощность

Не только в новых, но и в старых домах владельцы жилья подключают новые виды бытовой техники и оборудования. Увеличение нагрузки может вызвать сбои в работе электрической сети, поэтому вопрос мощности подведенного кабеля нужно выяснить заранее. Эту информацию можно найти в акте разграничения балансовой ответственности или в справке о разрешенных мощностях, где указывается конкретная расчетная и установленная мощность.

Определение расчетной мощности известно также как мощность одновременного включения. Данный параметр указывает на возможное подключение установленного количества потребителей, имеющихся в квартире. В случае включения излишнего оборудования, автоматические защитные устройства просто выйдут из строя. Сумма мощностей всех приборов будет соответствовать установленной мощности. Однако в случае одновременного включения, в сети возникнут значительные перегрузки, что приведет к срабатыванию защитных устройств. Именно средства защиты позволяют установить определенный предел нагрузки, разрешенный для конкретного жилья.

Во многом значение расчетной мощности зависит от ввода. Каждая лестничная площадка оборудуется , через который осуществляется ввод в квартиру кабеля с необходимым сечением. После этого внутри помещения размещаются все остальные элементы системы электроснабжения, в том числе и щит с устройствами распределения нагрузки по отдельным линиям.

В большинстве домов старой постройки подключено однофазное питание с напряжением 220 В. Именно такое подключение препятствует чрезмерной нагрузке на линию и не дает возможности подключения всех современных приборов. Эта проблема решается с помощью трехфазного ввода на 380 вольт. Он состоит из трех линий, перераспределяющих на себя общую нагрузку. В случае интенсивного энергопотребления происходит равномерное распределение нагрузки на каждую фазу.

Поэтому прежде чем планировать приобретение бытовой техники и оборудования, необходимо заранее выяснить, какой ток подведен в квартиру. Если подведены три фазы, то никаких проблем не будет, поскольку на один ввод приходится от 14 до 20 кВт, что позволяет свободно подключать все необходимые приборы. Однако в старых постройках с однофазным вводом и алюминиевым кабелем, максимальная мощность нагрузки составляет всего 4 кВт. В этом случае об использовании каких-либо устройств, кроме освещения не может быть и речи. Потребуется выделение дополнительной мощности, и по данному вопросу необходимо обращаться в соответствующие службы.

Расчетная мощность (определение)

Одним из основных этапов проектирования систем электроснабжения объекта является правильное определение ожидаемых (расчетных) электрических нагрузок как отдельных ЭП, так и узлов нагрузки на всех уровнях системы электроснабжения.

Расчетные значения нагрузок – это нагрузки, соответствующие такой неизменной токовой нагрузке (

), которая эквивалентна фактической изменяющейся во времени нагрузке по наибольшему тепловому воздействию (не превышая допустимых значений) на элемент системы электроснабжения.

Существуют различные методы определения расчетных электрических нагрузок, которые в свою очередь делятся на основные; и вспомогательные.

К расчётным электрическим нагрузкам относятся расчётные значения активной мощности (

), реактивной мощности (


), полной мощности ( ) и тока (


).

Пример

Допустим, в нашем распоряжении генератор с показателями мощности в 3 кВА и cos φ, равным 0,8. В таком случае номинальная мощность данной установки будет равна:

3 кВА х 0,8=2,4 (кВт)

Теперь можно понять, почему мощность может указываться в тех или иных единицах измерения, в ваттах (Вт) или Вольт Амперах (ВА). Некоторые производители, чтобы избавить потребителя от необходимости проведения вычислений, просто указывают в сопроводительной документации оба значения мощности – номинальной и максимальной. Встречаются также варианты, когда производителем указывается только одна из мощностей и приводится значение коэффициента мощности. Некоторые недобросовестные компании могут скрывать коэффициент мощности от потребителя. Это делается с целью выдать генератор за более мощную, чем на самом деле, установку.

Типы оборудования

Диссипативное оборудование

В оборудовании, которое в основном рассеивает электроэнергию или преобразует ее в механическую энергию, например резисторы и динамики , указанная номинальная мощность обычно является максимальной мощностью, которая может безопасно рассеиваться оборудованием. Обычно причиной этого ограничения является тепло , хотя в некоторых электромеханических устройствах, особенно в динамиках, это необходимо для предотвращения механических повреждений. Когда тепло является ограничивающим фактором, легко рассчитать номинальную мощность. Во-первых, необходимо рассчитать количество тепла, которое может безопасно рассеиваться устройством . Это связано с максимальной безопасной рабочей температурой , температурой окружающей среды или температурным диапазоном, в котором устройство будет эксплуатироваться, а также с методом охлаждения . Если — максимальная безопасная рабочая температура устройства, — температура окружающей среды и — полное тепловое сопротивление между устройством и окружающей средой, то максимальное тепловыделение определяется выражением
п D , м а Икс {\ displaystyle P_ {D, max}} Т D , м а Икс {\ displaystyle T_ {D, max}} Т А {\ displaystyle T_ {A}} θ D А {\ displaystyle \ theta _ {DA}}

п D , м а Икс знак равно Т D , м а Икс — Т А θ D А {\ displaystyle P_ {D, max} = {\ frac {T_ {D, max} -T_ {A}} {\ theta _ {DA}}}}

Если вся мощность в устройстве рассеивается в виде тепла, то это также номинальная мощность.

Механическое оборудование

Оборудование обычно оценивается по мощности, которую оно передает, например, на валу электрического или гидравлического двигателя. Потребляемая мощность оборудования будет больше из-за менее 100% КПД устройства. Эффективность устройства часто определяется как отношение выходной мощности к сумме выходной мощности и потерь. В некоторых типах оборудования можно напрямую измерить или рассчитать потери. Это позволяет рассчитать КПД с большей точностью, чем отношение входной мощности к выходной мощности, где относительно небольшая погрешность измерения сильно повлияет на результирующий расчетный КПД.

Оборудование для преобразования энергии

В устройствах, которые в основном преобразуют между различными формами электроэнергии, например трансформаторы , или транспортируют ее из одного места в другое, например, по линиям электропередачи , номинальная мощность почти всегда относится к максимальному потоку мощности через устройство, а не к рассеянию внутри него. Обычно причиной ограничения является тепло, а максимальное рассеивание тепла рассчитывается, как указано выше.

Номинальная мощность обычно указывается в ваттах для реальной мощности и в вольт-амперах для полной мощности , хотя для устройств, предназначенных для использования в больших энергосистемах, оба значения могут быть даны в системе на единицу . Кабели обычно оцениваются с указанием максимального напряжения и допустимой нагрузки . Поскольку номинальная мощность зависит от метода охлаждения, для воздушного, водяного и т. Д. Могут быть указаны разные номиналы.

Лидеры по мощности двигателя в секторе скоростных авто

В топ-3 наиболее мощных автомобилей вошли:

  • экспериментальный Pininfarina Battista с электрическими моторами и 2-местым кузовом купе с подъемными дверями;
  • прототип Rimac Concept Two с электрической силовой установкой, теоретически позволяющей разогнать машину до 415 км/ч;
  • футуристический Devel Sixteen, являющийся плодом фантазии небольшой компании из ОАЭ и не продвинувшийся дальше стадии статического макета.

Pininfarina Battista

В рамках ежегодной выставки в Женеве в 2019 г. был показан прототип спортивного купе Pininfarina Battista, оснащенный электрической силовой установкой. Создатели заявили мощность более 1900 л. с. при моменте не ниже 2300 Н*м. Максимальная скорость ограничена прочностными возможностями шин на уровне 350 км/ч, а для разгона до 300 км/ч требуется 12 секунд. Аккумуляторная батарея емкостью 120 кВт*ч обеспечивает запас хода до 450 км (без уточнения скорости движения). Озвучены планы выпуска 150 машин, но на январь 2021 г. Pininfarina Battista серийно не собирается.

Rimac Concept Two

В 2018 г. хорватская компания Rimac Automobili представила прототип электрического спортивного автомобиля с 2-дверным кузовом купе и системой полного привода. Для каждого колеса использован отдельный электрический двигатель с редуктором, суммарная мощность заявлена на уровне 1914 л. с. Для питания силовой установки применена литий-никелевая батарея, обеспечивающая запас хода до 650 км (при спокойном ритме эксплуатации). Запланированный на 2020 г. серийный выпуск так и не начался, ряд автомобильных изданий скептически оценивает перспективы проекта.

Devel Sixteen

Быстрый автомобиль Devel Sixteen был представлен группой разработчиков из ОАЭ в виде статического макета в 2013 г. Создатели рассказывали о гипотетическом бензиновом моторе мощностью до 5000 л. с., способном разогнать машину до 560 км/ч. При этом информация о расположении радиаторов, необходимых для отвода излишков тепла, не сообщалась. Было известно, что работы над двигателем вела американская фирма Steve Morris Engines. Прототипы машины для ходовых испытаний или двигателя для стендовых прогонов так и не появились.

Какой должна быть номинальная мощность мясорубки

Поскольку не существует точно установленных параметров, можно привести лишь примерные оптимальные показатели мощности. Чтобы прибор легко справлялся с переработкой любого типа мяса, в том числе жесткого, его номинальная мощность должна быть около 450 Вт, а максимальная – примерно 1500 Вт.

Мощность мясорубок популярных марок:

  1. BOSCH MFW2515W. Максимальная – 1500 Вт, номинальная – 350 Вт.
  2. Rainberg RB Максимальная – более 1500 Вт, номинальная – 300 Вт.
  3. MOULINEX 3в1 ME111032. Максимальная – 1400 Вт, номинальная – 500 Вт.
  4. Tefal NE109838. Максимальная – 1400 Вт, номинальная – 300 Вт.
  5. KENWOOD MG 516. Максимальная – 1600 Вт, номинальная – 450 Вт.

Каждый производитель имеет свои критерии в определении параметров мощности. У популярных моделей максимальная составляет около 1400–1500 Вт, а номинальная – в районе 400 Вт.

Чтобы правильно выбрать модель мясорубки, исходите из индивидуальных требований и условий эксплуатации:

  1. Электроприборы мощностью до 500 Вт лучше подойдут для редкого использования – пару раз в месяц. Идеальное решение для приготовления небольшого объема домашнего фарша. Допускается обработка только мягких продуктов. Примерная производительность – 0,5–1 кг/мин. Работают тихо, потребляют мало электроэнергии.
  2. Если нужно перерабатывать много продуктов (например, для большой семьи), ориентируйтесь на модели, номинальная мощность которых в пределах 500–1000 Вт. Они перерабатывают 1–2 кг/мин, легко перемалывают твердые овощи, хрящи. При этом такие устройства потребляют больше электроэнергии и работают громче.

Учитывайте еще несколько моментов при выборе мясорубки. Чем выше мощность, тем меньше времени нужно на предварительную обработку мяса. Так, в маломощные устройства нельзя загружать куски крупного размера, а также с большим содержанием прожилок и жира. Для переработки такого сырья прибору придется задействовать все резервы, то есть перейти на пиковую мощность. Длительная работа в таком режиме крайне нежелательна – возможны поломки.

Мясорубка с высокой номинальной мощностью обрабатывает практически любые виды продуктов. Не обязательно удалять все хрящи, жировые прослойки и жилы. Минимальная обработка мяса существенно экономит время. Также высокая мощность позволяет использовать прибор, например, в качестве кофемолки.

Правила и нормативы

Электрификация любого объекта осуществляется в соответствии с ТУ, разработанными кампанией, предоставляющей услуги электроснабжения. В одном из пунктов данного документа указываются параметры выделяемой мощности для сети потребителя. Энергоснабжающая компания формирует ТУ на основании заявленной мощности, обоснованной расчетами.

При электрификации жилых и общественных зданий руководствуются СП 31 110 2003 и временной инструкцией PM 2696 01. Согласно данным документам жилые дома, относящиеся к 1-й категории, не нормируются по выделению мощности. То есть, если имеется техническая возможность, то ТУ на подключение таких объектов формируется на основании поданной заявки.

Для жилых домов 2-й категории предусмотрено две нормы электрификации:

  1. 5 – 7 кВт, на частный дом или квартиру, с газовыми плитами.
  2. 8 – 11 кВт – с электрическими плитами.

При этом нижний порог выделения мощности предусмотрен для малогабаритных квартир в домах, строящихся по программе социального жилья. Заметим, что эти нормы установлены относительно недавно, для электроустановок жилых объектов, построенных до 2006 года, они были ниже.

Оптимальные обороты работы двигателя.

Каждый водитель должен знать какие обороты для двигателя его автомобиля оптимальны, это знание не только поможет сэкономить немного денег на топливе и ремонте, но, возможно, и спасти жизнь, ведь не зная возможностей своего автомобиля, не умея использовать его двигатель, можно подвергнуть опасности себя и своих пассажиров.

Начнем с того, что нет универсальных оборотов для всех режимов эксплуатации

. Для прогрева двигателя необходимы одни обороты, для обгона другие, для размеренного движения по городу третьи.

Начнем с конечно же с пуска двигателя, сразу после поворота ключа, двигатель начинает работать на повышенных оборотах (по сравнению с холостым ходом). В данной ситуации это оптимальные обороты для прогрева двигателя

(обычно 1100-1200 об/мин), для подачи застывшего масла и теплового расширения шатунно-поршневой группы до рабочего размера (подробнее можно почитать здесь ). Если вы хотите продлить срок службы вашего двигателя, не стоит пытаться избавиться от них, перепрошивать ЭБУ, поддавать газку, чтобы быстрее прогреться, но и начинать движение на прогревочных оборотах не рекомендуется.

Когда ШПГ выходит на рабочую температуру, двигатель переходит на обороты холостого хода

(600-800 об/мин)— это оптимальные обороты для неподвижного автомобиля . Двигатель работает в облегченном режиме, только чтобы не заглохнуть и обеспечить минимальный расход топлива. Валы вращаются практически в свободном состоянии, они не нагружены и износа в них практически не бывает, если бы не одно НО: масляный насос тоже работает на минимальных режимах, если масло свежее и качественное, то проблем не будет, насос без проблем прогонит его по всем каналам и забросит в самые труднодоступные места, тем самым смазывая их и охлаждая. Если же масло не обладает нужными качествами, маслонасос не справляется, двигатель начинает понемногу перегреваться, еще сильнее портить масло и понемногу возникает масляное голодание и, как следствие, повышенный износ двигателя.

Итак, мы включили передачу, и начали движение. Оптимальные обороты для равномерного прямолинейного движения по ровной поверхности

обычно в диапазоне от 1800 до 2000 об/мин.. При этом режиме работы двигатель выдает ровно столько, сколько необходимо для поддержания движения с заданной скоростью с минимальным расходом топлива. Обычно двигатель и коробка передач подобраны так, что на этих оборотах обеспечивается максимально разрешенная скорость по дороге. Например 60 км/ч на четвертой скорости при 2000 оборотов или 90 км/ч на пятой скорости при 2000 оборотов. Пожалуй это идеальный режим работы двигателя с точки зрения долговечности и расхода топлива, двигатель практически не нагружен, масло равномерно распределена и все смазывает, но есть один нюанс — двигатель долго работавший на таких оборотах может подвести в самый неподходящий момент.

Ситуации на дороге бывают разные, иногда нужно просто ускорится на светофоре, чтобы успеть перестроится в нужный ряд, а иногда быстро обогнать фуру, в этом случае, оптимальными оборотами для быстрого ускорения будут обороты создающие максимальный крутящий момент

. На этих оборотах автомобилю придается наибольшее ускорение, а двигатель испытывает колоссальные нагрузки, и именно в этот момент мотор приработавшийся к 2000 оборотов может подвести. При работе двигателя шатуны двигателя, под действием инерции поршня немного вытягиваются, чем больше обороты, тем деформация сильнее (шатун длиннее). При длительной работе в щадящих режимах на стенках цилиндров образуется выработка, она всего несколько сотых миллиметра глубиной, но этого вполне достаточно, чтобы при переходе на высокие обороты износ поршневых колец увеличивается, возникает вероятность повреждения и разрушения колец.

На этих оборотах автомобилю придается наибольшее ускорение, а двигатель испытывает колоссальные нагрузки, и именно в этот момент мотор приработавшийся к 2000 оборотов может подвести. При работе двигателя шатуны двигателя, под действием инерции поршня немного вытягиваются, чем больше обороты, тем деформация сильнее (шатун длиннее). При длительной работе в щадящих режимах на стенках цилиндров образуется выработка, она всего несколько сотых миллиметра глубиной, но этого вполне достаточно, чтобы при переходе на высокие обороты увеличить износ поршневых колец, а возможно и повредить их или вовсе сломать.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: