Индикаторная, эффективная мощность и другие показатели автомобильного двигателя

Индикаторная и эффективная мощности

Индикаторной мощностью N i называют мощность, развиваемую газами внутри цилиндра двигателя. Единицами измерения мощности являются лошадиные силы (л. с.) или киловатты (квт); 1 л. с. = 0,7355 квт.

Для определения индикаторной мощности двигателя необходимо знать среднее индикаторное давление p i т. е. такое условное постоянное по величине давление, которое, действуя на поршень в течение только одного такта сгорание—расширение, могло бы совершить работу, равную работе газов в цилиндре за весь цикл.

Это давление p i можно подсчитать по полезной площади индикаторной диаграммы (на рис. 1 и 2 она заштрихована). Для карбюраторных двигателей величина р i составляет 8—12 кг/см 2 , а для дизельных — 7,5—10,5 кг/см 2 .

Если известно p i, то индикаторную мощность четырехтактного двигателя можно выразить следующей формулой:

где p i — среднее индикаторное давление, кг/см 2 ; V л — сумма рабочих объемов всех цилиндров (литраж) двигателя дм3 или л; n — число оборотов коленчатого вала в минуту.

Литраж двигателя определяется по формуле:

где π — постоянное число, равное 3,14; D — диаметр поршня, дм; S — ход поршня, дм; i — число цилиндров двигателя.

Эффективной мощностью N e называют мощность, получаемую на коленчатом валу двигателя. Она меньше индикаторной мощности N i на величину мощности, затрачиваемой на трение в двигателе (трение поршней о стенки цилиндров, шеек коленчатого вала о подшипники и др.) и приведение в действие вспомогательных механизмов (газораспределительного механизма, вентилятора, водяного, масляного и топливного насосов, генератора и др.).

Для определения величины эффективной мощности двигателя можно воспользоваться приведенной выше формулой для индикаторной мощности, заменив в ней среднее индикаторное давление p i средним эффективным давлением р е (р е меньше p i на величину механических потерь в двигателе).

На практике эффективную мощность N е определяют путем испытания двигателя на тормозных стендах (электрических или гидравлических), пользуясь следующей формулой:

где М е — крутящий момент двигателя, кгм, равный произведению окружной силы на маховике на радиус маховика; n — число оборотов коленчатого вала в минуту.

Эффективная мощность повышается с увеличением крутящего момента и числа оборотов коленчатого вала (до некоторого предела).

Эффективная мощность и крутящий момент тем больше, чем больше:

  1. литраж двигателя (т. е. диаметр и число цилиндров, длина хода поршня);
  2. наполнение цилиндров, которое повышается при усовершенствовании камер сгорания, уменьшении сопротивления впускной и выпускной систем, снижении подогрева горючей смеси, установке многокамерных карбюраторов и общем улучшении конструкции двигателя;
  3. степень сжатия, так как при ее повышении увеличивается скорость горения рабочей смеси, повышается температура и давление газов в начале такта сгорание — расширение, уменьшается количество тепла, уходящего с отработавшими газами и охлаждающей жидкостью.

Предельные значения степени сжатия ограничиваются свойствами применяемого топлива — октановым числом бензина.

Эффективная мощность изменяется с изменением угла опережения зажигания. Наивыгоднейшая величина этого угла зависит от числа оборотов коленчатого вала, нагрузки двигателя, сорта топлива и состава смеси.

Эффективная мощность тем больше, чем меньше потери на трение в двигателе и приведение в действие вспомогательных механизмов двигателя.

Литровой мощностью называют наибольшую эффективную мощность, получаемую с одного литра рабочего объема цилиндров двигателя.

Литровая мощность карбюраторных двигателей современных легковых автомобилей достигает 40—50 л. c. / л.

Одним из способов повышения, эффективной мощности двигателя без существенного увеличения его веса является наддув. Так, Ярославский моторный завод производит V-образные четырехтактные дизельные двигатели с турбонаддувом: 8-цилиндровые ЯМЗ-238Н (300—320 л. с.) и 12-цилиндровые ЯМЗ-240Н (500—520 л. с.).

Статья из книги «Устройство грузового автомобиля».

Ранние разработки

В 1821 году, после открытия феномена связи электричества и магнетизма, датским химиком Эрстедом, теоремы Ампера и закона Био — Савара, английский физик Майкл Фарадей построил два аппарата, которые он назвал «электромагнитное вращение»: непрерывное круговое движение магнитной силы вокруг провода — это фактическая демонстрация первого электродвигателя.

В 1822 году Питер Барлоу построил то, что можно считать первым электродвигателем в истории: «колесо Барлоу». Это устройство представляет собой простой металлический диск, нарезанный звездой, и концы которого погружаются в чашку, содержащую ртуть, обеспечивающая текущий поток. Однако он создает только силу, способную ее поворачивать, не допуская ее практического применения.

Первый экспериментально используемый коммутатор был изобретен в 1832 году Уильямом Стерджоном. Первый двигатель постоянного тока, изготовленный с целью продажи, был изобретен Томасом Давенпортом в 1834 году и запатентован в 1837 году. Эти двигатели не испытали никакого промышленного развития из-за высокой стоимости батарей в то время.

Электродвигатель с DC

Коммутируемый аппарат постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу. На валу также имеется коммутатор, долговременный поворотный электрический выключатель, который периодически меняет поток тока в обмотках ротора при вращении вала. Таким образом, каждый мостовой мотор постоянного тока имеет переменный ток, проходящий через вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, которые несут на коммутаторе; щеточки соединяют внешний источник электроэнергии с вращающейся арматурой.

Вращающаяся арматура состоит из одной или нескольких катушек проволоки, намотанной вокруг ламинированного ферромагнитного сердечника. Ток от щетки протекает через коммутатор и одну обмотку якоря, делая его временным магнитом (электромагнитом). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (полевой катушкой), как часть каркаса двигателя.

Сила между двумя магнитными полями имеет тенденцию вращать вал двигателя. Коммутатор переключает питание на катушки при повороте ротора, удерживая магнитные полюса, от когда-либо полностью совпадающего с магнитными полюсами поля статора, так что ротор никогда не останавливается (как стрелка компаса), а скорее вращается пока есть питание.

Хотя большинство коммутаторов являются цилиндрическими, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (как правило, не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щетки, для максимизации мощности двигателя, но небольшие щеточки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать, без чрезмерного отскока и искрения щеток. Более жесткие пружины для щеток также могут использоваться для создания щеток заданной массы на более высокой скорости, но за счет больших потерь из-за трения и износа ускоренной щетки и коммутатора. Поэтому конструкция электродвигателя постоянного тока влечет за собой компромисс между выходной мощностью, скоростью и эффективностью/износом.

Конструкция двигателей с DC:

  • Схема арматуры — обмотка, в ней переносится ток нагрузки, который может быть неподвижной или вращающейся частью двигателя или генератора.
  • Полевая схема — набор обмоток, создающих магнитное поле, так что электромагнитная индукция может существовать в электрических машинах.
  • Коммутация. Механическая техника, в которой может быть достигнута ректификация, или благодаря чему может быть получен постоянный ток.

https://youtube.com/watch?v=LSrUope34os

Существует четыре основных типов электродвигателей постоянного тока:

  1. Электродвигатель с шунтовой намоткой.
  2. Электродвигатель постоянного тока.
  3. Комбинированный двигатель.
  4. Двигатель PM.

Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле (1) A = Ps cos α, где α – угол между направлением действия силы и направлением перемещения.

При α = 90° cos α = cos 90° = 0 и A = 0, т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается: (1′) A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин, § 83): (2) AR = ∑ Ai, т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, AR=0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид (2′) ∑ Ai = 0, т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз – сила тяжести – движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1′) вычислить ее работу.

2. Не определяя непосредственно силы P, определить Ap – работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле (3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то (3′) N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = vср – средняя скорость и тогда формула (2′) выпажает среднюю мощность Nср = Pvср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ (4) η = Aпол/A, где Aпол – полезная работа; A – вся произведенная работа, или как отношение соответствующих мощностей: (4′) η = Nпол/N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.): 1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами N (кВт) = 1,36 N (л. с.) N (л. с.) = 0,736 N (кВт).

Задача 221.

Какую работу производит человек, передвигая по горизонтальному полу на расстояние 4 м горизонтально направленным усилием ящик массой 50 кг? Коэффициент…

Задача 222.

На тело M массой m=40 кг, могущее перемещаться вдоль вертикального направляющего бруска, действует некоторая сила P, постоянно направленная под…

Задача 223.

Какой мощности электродвигатель необходимо поставить на лебедку, чтобы она могла поднимать клеть со строительными материалами общей массой m=1200…

Задача 224.

Какую работу необходимо произвести, чтобы равномерно передвинуть в горизонтальном направлении на расстояние s клинчатый ползун 1 вдоль направляющих…

Задача 225.

Тело М весом G=50 кГ равномерно перемещается вверх по наклонной плоскости, длина которой l=4 м и угол подъема α=20° (рис. 255,…

Задача 227.

Тело М весом G=50 кГ равномерно перемещается вверх по наклонной плоскости l=4 м и с углом подъема α=20°. Определить работу, произведенную…

Задача 229.

Определить работу, которую необходимо произвести, чтобы перекатить каток массой 50 кг на расстояние 4 м по горизонтальной негладкой поверхности…

Расчет мощности электродвигателя

  1. Основные типы электродвигателей
  2. Расчет мощности электродвигателя для насоса
  3. Формула расчета мощности для компрессора
  4. Формула для вентиляторов
  5. Расчет пускового тока
  6. Режимы работы электродвигателей

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Как построить гоночные двигатели: руководство по крутящему моменту и лошадиным силам

Двигатели для соревнований созданы и рассчитаны на максимальный крутящий момент и мощность, но что именно это означает? Крутящий момент — это суть дела. Определяется как скручивающая сила, которая представляет потенциал для выполнения работы. Крутящий момент двигателя — это потенциал силы или крутящий момент, приложенный к фланцу коленчатого вала или маховику, когда давление сгорания передается на шатуны коленчатого вала через шатуны. Когда маховик вращается, крутящий момент измеряется сопротивлением вращению.Когда маховик вращается, крутящий момент прикладывается в течение определенного периода времени, и можно рассчитать мощность в лошадиных силах, таким образом, мощность в лошадиных силах является зависимой переменной крутящего момента.

УЗНАЙТЕ БОЛЬШЕ ОБ ЭТОЙ КНИГЕ ЗДЕСЬ

л.с. = крутящий момент х об / мин / 5 252

Крутящий момент — это фактическая мера способности двигателя выполнять работу. Лошадиная сила — это скорость, с которой выполняется работа. Крутящий момент ускоряет массу гоночной машины; Лошадиная сила — это функция крутящего момента, которая поддерживает скорость, поддерживая приложение крутящего момента во времени.Производители двигателей признают способность хороших двигателей быстро создавать крутящий момент в указанном диапазоне оборотов двигателя (об / мин). Они называют это «переходным крутящим моментом», или скоростью, с которой нагруженный двигатель может ускоряться в заданном диапазоне оборотов двигателя. Чем больше переходный крутящий момент, тем быстрее двигатель способен ускоряться под нагрузкой.

Все двигатели генерируют кривую крутящего момента, которая достигает пика в некоторой точке диапазона оборотов. Этот пик представляет собой наиболее эффективную точку в рабочем диапазоне двигателя и тесно связан с кривой VE.Доступные методы настройки позволяют нам расположить пик в наиболее подходящем месте в диапазоне мощности и изменить кривую вокруг него для получения максимальной производительности.

Все двигатели генерируют сигнатуру крутящего момента, основанную на смещении, частоте вращения двигателя, VE и динамике траектории потока, и, что неудивительно, зависит от конкретной архитектуры, то есть I-4, I-6, V-6, V-8, V- 10, V-12 и т. Д., Каждый из которых применяет различные атрибуты к заполнению цилиндра, среднему полезному крутящему моменту и общей гладкости двигателя.Каждая комбинация генерирует пик крутящего момента или «сладкую точку», где ее особая динамика настройки достигает максимального VE. В случае двигателей соревнования это часто превышает 100-процентное VE, иногда со значительным отрывом. Старая поговорка о том, что двигатель — это воздушный насос, безусловно, верна, но также думайте об этом как о воздушном процессоре. Мощность зависит от количества воздуха и топлива, которое двигатель может обработать с течением времени, и от удельного расхода топлива (BSFC), который зависит от эффективности смеси конкретных компонентов.Относительно легко подать достаточно топлива, но значительно сложнее максимизировать поток воздуха без помощи силового сумматора.

Обратите внимание на то, как кривая крутящего момента повторяет кривую VE ниже и выше пика крутящего момента из-за проблем с потоком и низкого качества смеси при более низких оборотах двигателя, в то время как недостаточное время заполнения цилиндра выше пика крутящего момента из-за увеличенной частоты вращения двигателя

Одноступенчатые 4-цилиндровые двигатели с цилиндрической чашей входят в число самых мощных карбюраторных двигателей, поскольку каждый компонент тщательно оптимизирован в соответствии с эксплуатационными требованиями применения.

Для любой заданной совокупности деталей двигатель достигает пика крутящего момента, на который преимущественно влияют настройки впуска и выпуска относительно его размера или рабочего объема и частоты вращения двигателя. Благодаря внимательному манипулированию этими и вспомогательными компонентами оборудования, кривая крутящего момента может формироваться и позиционироваться в соответствии с конечным применением двигателя. Это является основным направлением деятельности всех компетентных производителей двигателей и начинается с погони за VE относительно статической мощности двигателя.Компонент воздушной массы в значительной степени зависит от доступной плотности воздуха и VE, которое может генерировать конкретная смесь компонентов. VE в первую очередь определяется динамикой пути впуска и выпуска, эффективностью камеры сгорания, фазой газораспределения, а также элементами нижнего конца и клапанного механизма, которые определяют конечную скорость вращения.

Расчет мощности электродвигателя

  1. Основные типы электродвигателей
  2. Расчет мощности электродвигателя для насоса
  3. Формула расчета мощности для компрессора
  4. Формула для вентиляторов
  5. Расчет пускового тока
  6. Режимы работы электродвигателей

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Понятие мощности электродвигателя

Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л.с., HP, Horse Power). Для справки: 1 л.с. приблизительно равна 0,75 кВт.

На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность

. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

Электрическая (потребляемая) мощность

двигателя Р1 всегда больше отдаваемой Р2, поскольку в любом устройстве преобразования энергии существуют потери. Основные потери в электродвигателе – механические, обусловленные трением. Как известно из курса физики, потери в любом устройстве определяются через КПД (ƞ), который всегда менее 100%. В данном случае справедлива формула:

Р2 = Р1 · ƞ

КПД в двигателях зависит от номинальной мощности – у маломощных моделей он может быть менее 0,75, у мощных превышает 0,95. Приведенная формула справедлива для активной потребляемой мощности. Но, поскольку электродвигатель является активно-реактивной нагрузкой, для расчета полной потребляемой мощности S

(с учетом реактивной составляющей) нужно учитывать реактивные потери. Реактивная составляющая выражается через коэффициент мощности (cosϕ). С её учетом формула номинальной мощности двигателя выглядит так:

Р2 = Р1 · ƞ = S · ƞ · cosϕ

Крутящий момент двигателя

Стоит понимать, что мощность мотора – это энергия, которая вырабатывается двигателем. И именно эта энергия преобразуется в крутящий момент на выходном (коленчатом) валу двигателя, далее момент изменяется в трансмиссии (при помощи нужных передаточных чисел шестерен) и после передается на привода, или ведущие мосты и после на колеса.

Тронуться и поехать, вы сможете даже на маломощном двигателе (причем для этого нам не нужно много мощности), здесь работают передаточные числа, которые точно подобраны в трансмиссии вашего авто.

НО мы же не хотим ездить со скоростью 20 – 40 км/ч, нам нужно ускорение, быстрое передвижение. А для этого просто необходим достаточный крутящий момент при всех диапазонах скоростей. Это достигается – достаточной мощностью двигателя и подбором шестерен в трансмиссии и приводах, мостах (если есть).

Если вывести определение:

Крутящий момент – это сила, которая умножена на плечо ее приложения, которую может предоставить мотор машине для преодоления тех или иных сопротивлений движению. Измерения производят в ньютонах, а рычаг измеряется в метрах.

Если разобрать, просто «на пальцах формулу», то 1 Н·м – это сила с которой 0,1 кг, давят на конец рычага (это поршень) длиной в 1 метр. Как становится понятно, в двигателе роль рычага выполняет кривошип коленчатого вала, через который и производится крутящий момент. Понятно, что кривошип, длинной не 1 метр, но момент вычисляется из приложенных характеристик.

Именно от этого показателя и зависит время достижения силовым агрегатом максимальной мощности, а значит и динамики разгона авто.

Если образно утрировать — то момент, собирает все лошадиные силы в «кулак» который и раскручивает мотор, и чем больше этот кулак, тем быстрее раскручивается мотор и ускоряется автомобиль.

Эффективная мощность двигателя

Полезная мощность, передаваемая двигателем потребителю, именуемая эффективной мощностью Nе, меньше, чем Ni, на величину механических потерь.

Эти потери обусловлены тре­нием поршня и подшипников, затратой работы на насосы — топлив­ный, продувочный, водяной и пр. Известно, что механические потери учитываются механическим к. п. д., т. е.

?м = Nе / Ni ,

и поэтому

Ne = ?мNi. (11,28)

Средние значения механического к. п. д. у различных двигателей колеблются в пределах 0,7—0,9.

Если мощность, соответствующую механическим потерям, обозначить через Nr, то

Ne= Ni – Nr .

Разделим все части этой формулы на коэффициент К. Для четырехтактного двигателя К =Vhni /900, для двухтактного К = Vhni /450.

Тогда

Ne / K = Ni /K – Nr / K .

Из формул (II, 24) и (II, 25) видно, что член Ni /K представляет

собой среднее индикаторное давление pi.По аналогии с этим член

Ne / K называют средним эффективным давлением ре.

Физический смысл его таков: это та часть среднего индикаторного давления, которая пропорциональна работе, отдаваемой двигателем потребителю.

Член Nr / K = рr соответствует той части среднего индикаторного

давления, которая пропорциональна работе, затраченной на механи­ческие потери.

Величины ре и рr имеют большое значение при расчете и сравне­нии показателей различных типов двигателей.

Из формул (II, 24), (II, 25), (II, 28) и (II, 30) следует: для четырехтактных двигателей

В современных четырехтактных дизелях без наддува в среднем 5

При наддуве ре может быть значительно поднято — до 15 кГ/см2 и выше.

Кинетическая и потенциальная энергии

Кинетическая
энергия

механической системы — энергия
механического движения этой системы.

Сила
F, действуя на покоящееся тело и вызывая
его движение, совершает работу, а изм-е
энергии движущегося тела(dT)
возрастает на величину затраченной
работы dA.
Т . е. dA
= dТ

Используя
второй закон Ньютона(F=mdV/dt)
и ряд др-х преобразований получаем

(5)
— кинетическая энергия тела массой m,
движущееся со скоростью v.

Кинетическая
энергия зависит только от массы и
скорости тела.

В
разных инерциальных системах отсчета,
движущихся друг относительно друга,
скорость тела, а следовательно, и его
кинетическая энергия будут неодинаковы.
Т. о., кинетическая энергия зависит от
выбора системы отсчета.

Потенциальная
энергия

— механическая энергия системы тел,
определяемая их вза­имным расположением
и характером сил взаимодействия между
ними.

В
сл-е взаимодействия тел осуществл-х
посредством силовых полей(поля упругих,
гравитационных сил), работа, совершаемая
действующими силами при перемещении
тела, не зависит от траектории этого
перемещения, а зависит только от
начального и конечного положений тела.
Такие поля называются потенциальными,
а силы, действующие в них, — консервативными.
Если же работа, совершаемая силой,
зависит от траектории перемещения тела
из одной точки в другую, то такая сила
называется диссипативной(сила
трения). Тело, находясь в потенциальном
поле сил, обладает потенциальной энергией
П. Работа консервативных сил при
элементарном(бесконечно малом) изменении
кон­фигурации системы равна приращению
потенциальной энергии, взятому со знаком
минус: dA=
— dП
(6)

Работа
dA
— скалярное произведение силы F
на перемещение dr
и выражение (6) можно записать:
Fdr=
-dП
(7)

При
расчётах потенциальную энер­гию тела
в каком-то определенном положении
считают равной нулю(выбирают нулевой
уровень отсчета), а энергию тела в других
положениях отсчитывают от­носительно
нулевого уровня.

Конкретный
вид функции П зависит от характера
силового поля. Например, потенциальная
энергия тела массой т,
поднятого на высоту h
над поверхностью Земли, равна (8)

где
высота h
отсчитывается от нулевого уровня, для
которого П=0.

Т.
к. начало отсчета выбирается произвольно,
то потенциальная энергия может иметь
отрицательное значение(кинетическая
энергия всегда положительна!).

Если принять за нуль потенциальную
энергию тела, лежащего на поверхности
Земли, то потенциальная энергия тела,
находящегося на дне шахты(глубина h),
П= mgh‘.

Потенциальная
энергия системы является функцией
состояния системы. Она зависит только
от конфигурации системы и ее положения
по отношению к внешним телам.

Полная
механическая энергия системы

равна сумме кинетической и потенциальной
энергий:
E=T+П.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Градация мощностей, предусмотренная для двс

Для оценки режимов работы дизелей, выпускаемых отечественной промышленностью, принята, согласно ГОСТ 10150—82, следующая градация мощностей: – номинальная мощность — это длительная эффективная мощность при номинальной частоте вращения в условиях, для которых предназначен дизель с учетом возможности развития максимальной мощности;

– максимальная мощность

— это кратковременная мощность, превышающая номинальную на 10% и получаемая периодически в течение не более 1 ч;

полная мощность

— это длительная эффективная мощность, назначаемая по требованию потребителя взамен номинальной мощности (продолжительность работы на этой мощности не ограничивается);

минимальная мощность

, допускаемая при длительной работе,— это наименьшая длительная эффективная мощность, гарантируемая при соответствующей частоте вращения;

мощность, соответствующая минимально устойчивой частоте вращения

,— это мощность, устанавливаемая заводами-изготовителями по согласованию с потребителями (продолжительность работы на этой мощности определяется назначением дизеля).

4.4 Эффективные показатели двигателя.

4.4.1 Среднее эффективное давление

Среднее эффективное давление Pe— это отношение эффективной работы на валу двигателя к единице рабочего объёма цилиндра.

Т. е. это условное постоянное давление в цилиндре двигателя, при котором работа, проводимая в нём за один такт, равнялась бы эффективной работе за цикл.

, МПа

где:

Li – индикаторная работа цикла

LМ – работа механических потерь.

Ре можно представить как:

, МПа

где Рi, PМ – соответственно среднее индикаторное давление и давление механических потерь, МПа

Ре = 0,6…1,1 – карбюраторный

Ре = 0,55…0,85 – дизельный без наддува

Ре = до 2,0 – дизельный с наддувом.

Длительное время стремились к увеличению Ре. Однако, за последние 10…15 лет эта тенденция заметно изменилась в связи с растущими требованиями к токсичности двигателей.

Сейчас характерно сохранение и даже снижение Ре при резком уменьшении токсичности.

4.4.2 Эффективная мощность

Эффективная мощность Ne– это мощность двигателя снимаемая с коленчатого вала двигателя, КВ.

Эта мощность передаётся трансмиссии тракторов и автомобилей.

, КВт

где:

Ni – индикаторная мощность, КВт

NМ – мощность, затрачиваемая на преодоление механических потерь, КВт.

По аналогии с Ni формула Nе может быть записана:

, КВт

Крутящий момент двигателя (НМ) можно описать формулой

   , рад/с  , НМ

где ω – угловая скорость коленчатого вала, рад/с

, Нм

или подставляя значение Nе

откуда

, МПа

Если обозначим    , то  

Следовательно, для данного двигателя крутящий момент прямо пропорционален среднему эффективному давлению.

При испытании двс.

4.4.3 Литровая мощность

Литровая мощность – эффективная мощность, приходящаяся на единицу рабочего объёма цилиндров двигателя.

, КВт/л

где

Vл – литраж двигателя:   

Nл=15…40 КВт/л – карбюраторный двигатель

Nл=11…22 КВт/л – дизельный двигатель

4.4.4 Удельная масса двигателя

Удельная масса двигателя – отношение массы незаправленного двигателя к его номинальной мощности, кг/КВт;

, кг/КВт

где mд —  масса незаправленного двигателя, кг

gN = 2…6 кг/КВт — карбюраторный двигатель

gN = 4,5…14 кг/КВт — дизельный двигатель.

4.4.5 Механический КПД

Механический КПД – оценочный показатель механических потерь в двигателе.

ηм – отношение среднего эффективного давления, эффективной мощности и момента к соответственным индикаторным показателям.

Из уравнений имеем:

ηм = 0,7…0,9 – карбюраторный двигатель

ηм = 0,7…0,82 – дизельный двигатель без наддува

ηм = 0,8…0,9 — дизельный двигатель с наддувом

4.4.6 Эффективный КПД

Эффективный КПД (ηе) – отношение количества теплоты, эффективной полезной работы на валу двигателя, к общему количеству теплоты, внесённой в двигатель с топливом.

где Le – теплота, эквивалентная эффективной работе, МДж/кг топл;

Qн – низшая теплота сгорания топлива, МДж/кг

т. к. ;  

, то

 — характеризует степень использования теплоты в двигателе с учётом всех потерь: тепловых и механических.

4.4.7 Эффективный удельный расход топлива

Эффективный удельный расход топлива (г/КВт ч) определяется

, г/КВт ч

где:

GT – часовой расход топлива, кг/ч

ηе по аналогии с ηi можно записать

.

4.4.8 Часовой расход топлива

Часовой расход топлива может быть определён

, кг/ч

Примерные значения

Двигатель

ηе

ge, г/КВт ч

Карбюраторный

0,25…0,33

250…325

Дизельный

Неразделенная камера сгорания

0,35…0,40

210…245

Разделенная камера сгорания

0,35…0,40

230…280

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: