Принцип работы автомобильного турбокомпрессора
Турбокомпрессор является сложным устройством, используемым в целях увеличения мощностных характеристик двигателя благодаря большему количеству воздуха, который подается в цилиндры. Принцип работы турбокомпрессора сводится к следующему:
- при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной уже во впускном коллекторе;
- поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
- так, в мотор поступает большее количество воздушной массы, а значит, в него подается и больше топлива. Как известно, чем больше сгорает топливной смеси, тем мощнее становится двигатель. Задача автомобильного турбокомпрессора как раз и состоит в том, чтобы поставлять в силовой агрегат больше воздуха для сжигания большего количества топлива, за счет чего и достигается значительная прибавка мощности.
Рекомендуем: Аренда спецтехники — самосвал, нюансы и особенности этого процесса
Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.
Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.
Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.
Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.
Устройство и принцип действия турбокомпрессора авто
Устройство и принцип действия турбокомпрессора направлены на увеличение давления топлива в коллекторе впуска для обеспечения максимального поступление кислорода в камеру, где происходит сгорание. Основное назначение турбины – значительное увеличение мощности двигателя. Даже увеличение давления на 1 атмосферу в коллекторе приводит к попаданию в двигатель двойной порции кислорода. Это позволяет даже небольшому двигателю отдавать такую мощность, как вдвое больший его аналог, но не оснащенный турбонаддувом.
Рассмотрим, принцип работы турбины на авто. Поток выхлопных газов поступает из выпускного коллектора в горячую часть турбины, там воздействует на лопасти крыльчатки, приводя ее в движение вместе с валом. На нем закреплена также крыльчатка компрессора, расположенного в холодном отсеке турбины. Она при вращении повышает давление в системе впуска, обеспечивая увеличенное поступление в камеру сжигания топлива и воздуха.
Устройство турбины автомобиля не сложное, она состоит из:
- Улитки компрессора, которая всасывает воздух, а затем нагнетает его в коллектор впуска;
- Улитки, расположенной в горячей части – здесь выхлопные газы заставляют вращать турбину, после чего выбрасываются в систему отработанных газов на выход;
- Крыльчатки компрессора, а также ее аналога в горячей части;
- Шарикоподшипникового картриджа;
- Корпуса, соединяющего улитки, имеющего систему охлаждения и системы подшипников.
Во время работы устройство подвергается значительным термодинамическим нагрузкам. Попадающие в турбину выхлопные газы достигают температуры 900°С, из-за чего ее корпус делают чугунным, причем для отливки используется особая технология. Обороты турбинного вала могут достигать показателя 200 000 об/мин, поэтому в конструкцию устанавливают высокоточные детали, которые тщательно подгоняют и затем балансируют. Также для турбины предъявляются высокие требования к смазочным материалам. Отдельные турбонагнетатели оборудованы так, что система смазки является одновременно охлаждением узла подшипников.
Охлаждающая система турбокомпрессоров необходима для улучшения передачи тепла от его механизмов и частей. Наиболее распространенные варианты охлаждения деталей — масляный способ и комплексное охлаждение антифризом и маслом. Оба типа имеют свои преимущества, но не лишены и недостатков.
Достоинства:
- Простая конструкция;
- Удешевление турбокомпрессора.
Недостатки:
- Меньшая эффективность в сравнении с системой, где выполняется использование антифриза с маслом;Высокая требовательность к составу масла;
- Необходимость часто его менять;
- Требовательность к контролированию температурного режима.
Изначально устройство турбокомпрессора имело только масляное охлаждение, которое быстро достигало высоких температур, проходя через подшипники. Такое масло начинает сразу закипать, возникает эффект коксования, из-за которого забиваются каналы, существенно ограничивая доступ охлаждения и смазки к подшипникам.
Ремонт турбины
Ремонтировать свой двигатель рекомендуется на специализированной станции. Однако устранение некоторых неполадок можно осуществить и самостоятельно.
Для начала необходимо произвести визуальный осмотр турбины и оценить ее работу. Ремонт турбины своими руками начинается с проверки уровня масла и его качества. Кроме того, следует оценить вероятность попадания посторонних предметов внутрь конструкции.
Если указанные причины были исключены, то можно приступать к анализу цвета выхлопа. Изменение оттенка, а также снижение тяги нередко свидетельствуют о проблемах на впуске или выпуске. В первом случае речь идет об уменьшении объема подаваемого воздуха, во втором – о наличии утечек.
Чтобы проверить работоспособность турбины, необходимо запустить двигатель. Силовой агрегат не должен издавать никаких посторонних звуков типа скрипа или свиста. В исправном моторе с турбиной не прорывается воздух из соединений. Следом нужно проверить состояние воздушного фильтра.
В основном проблемы с функционированием впуска и выпуска возникают именно с этим элементом. Если фильтр выглядит нормально, то следом за ним необходимо проверить сливной маслопровод. В нем нередко образуются перегибы, повреждения или пробки.
Далее наступает очередь ротора. Его нужно несколько раз прокрутить вокруг своей оси.
Если ротор цепляет за корпус турбины, она подлежит ремонту.
Когда двигатель во время работы издает много шума, следует проверить:
- Все трубопроводы на предмет выявления их износа.
- Ось турбины.
- Ротор.
При наличии проблем с любым из описанных элементов конструкции потребуется квалифицированный ремонт двигателя и турбины.
О наличии неисправностей может сообщает некорректная работа системы наддува. Чтобы проверить последнюю, потребуется сторонняя помощь. Прежде всего следует найти патрубок, который соединяет турбину и впускной коллектор. Затем нужно запустить двигатель и пережать указанный патрубок рукой.
В этот же момент второй человек должно нажать на педаль газа и удерживать ее в течение 3 — 5 минут. Исправный патрубок отвечает на подобные действия водителя, раздуваясь под давлением. Описанный эксперимент необходимо повторить 3 — 4 раза. Если ни в одном из случаев патрубок не раздувается, значит, турбина неисправна.
Вне зависимости от того, какие появились «симптомы», указывающие на наличие проблем с системой наддува, рекомендуется тщательно осмотреть патрубки, фланцы, коллекторы и другие элементы двигателя на наличие в них трещин.
Система охлаждения газотурбинной установки (ГТУ)
С ростом начальной температуры газов растет тепловая экономичность цикла ГТУ и уменьшается расход воздуха. Вместе с тем рост начальной температуры ограничен допускаемыми напряжениями в рабочих лопатках. В результате в ГТУ начальные температуры газа значительно ниже теоретически возможных, т.е. температур сжигания топлива с минимальным избытком воздуха, необходимым только для его окисления.
Охлаждение наиболее горячих элементов газовых турбин позволяет снизить их температуру при достаточно высокой температуре газа. Однако применение охлаждения уменьшает полезную работу ГТУ, так как часть теплоты, отбираемая охлаждающей средой от газа, не может быть преобразована в механическую работу, В некоторых случаях, если используется теплота охлаждающей среды, возможно частичное уменьшение этих потерь.
Снижение температуры элементов газовой турбины в результате охлаждения позволяет поднять термодинамический потенциал цикла ГТУ за счет увеличения начальной температуры рабочего газа. Охлаждение целесообразно применять в том случае, когда выигрыш в кпд от возможного повышения начальных параметров рабочего газа больше потерь, вызываемых охлаждением.
Система охлаждения ГТУ должна удовлетворять следующим требованиям:
- температура металла охлаждаемых деталей должна быть такой, чтобы его прочностные свойства обеспечивали заданный ресурс работы;
- градиенты температур охлаждаемых деталей не должны превышать значений, при которых температурные напряжения достигают опасных значений или возникает возможность недопустимого коробления деталей;
- затраты энергии на охлаждение должны быть значительно ниже дополнительной полезной энергии, вырабатываемой ГТУ за счет увеличения начальной температуры рабочего тела.
Кроме того, система охлаждения газотурбинной установки не должна чрезмерно усложнять конструкцию турбины и схему ГТУ и, как следствие, повышать ее стоимость, требовать вмешательства обслуживающего персонала при эксплуатации ГТУ и должна надежно работать при пусках, остановках и на переходных режимах.
В качестве примера рассмотрим систему воздушного охлаждения мощной газовой турбины, работающей при температуре около 900°С (рис.1).
Рис.1. Схема системы охлаждения мощной газовой турбины
Воздух для охлаждения отбирается после компрессора и за двенадцатой и девятой его ступенями. Для охлаждения деталей турбины, работающих при высоких температурах, воздух подводится четырьмя потоками:
- поток I — воздух из напорного патрубка компрессора вводится перед соплами, первой ступени, создавая заградительное охлаждение дна межлопаточного канала;
- поток II — воздух из напорного патрубка компрессора (дополнительно охлажденный до температуры 176°С) идет к переднему концевому уплотнению, а затем — к первому ряду направляющих лопаток, диску первой ступени со стороны входа газов, внутренним элементам ротора и частично — к гребням дисков второй и третьей ступеней;
- поток III — воздух после двенадцатой ступени компрессора идет к обоймам направляющих аппаратов и гребням дисков второй и третьей ступеней;
- поток IV — воздух после девятой ступени компрессора идет к заднему торцу диска третьей ступени и к концевому уплотнению на выходе газов.
Такая система охлаждения обеспечивает работу установки в режиме, при котором температура металла ротора не превышает 315°С.
Для чего используется охлаждение интеркулера в системе турбонаддува?
Побочным и неприятным эффектом при нагнетании воздуха в турбине является нагрев наддуваемого сжатого воздуха. Ведь чем он горячее, тем больше он старается расшириться, тем меньше по весу его войдет в цилиндры, соответственно меньшая мощность снимется с двигателя. Для его охлаждения используется специальный радиатор — интеркулер, через него пропускается горячий наддуваемый воздух, а охлаждение ведется либо естественным набегающим потоком воздуха, либо потоком уличного воздуха, принудительно подаваемым с помощью электровентилятора. Часто встречаются решения, когда поток охлаждающего воздуха создается только вентилятором.
Восстановление геометрии турбины
В компании Турбомикрон рассказали, что ремонт турбин с поломками геометрии выполняется только путем механической чистки и устранения причины перебоев в работе системы, поскольку кроме засора лопаток нагаром, причина плохой работы геометрии может быть в изношенном клапане актуатора.
Безусловно, работу по восстановлению агрегата лучше доверить профессионалам. Кроме быстрого определения проблемы и качественного решения, они правильно отрегулируют работу геометрии на специальном стенде. Сделать это в домашних условиях не только трудно, но и чревато дополнительными проблемами. Плюс, специалисты дадут гарантию на свою работу от 1 до 3 лет. Это удобно и надежно.
Источник
Система охлаждения газотурбинной установки (ГТУ)
С ростом начальной температуры газов растет тепловая экономичность цикла ГТУ и уменьшается расход воздуха. Вместе с тем рост начальной температуры ограничен допускаемыми напряжениями в рабочих лопатках. В результате в ГТУ начальные температуры газа значительно ниже теоретически возможных, т.е. температур сжигания топлива с минимальным избытком воздуха, необходимым только для его окисления.
Охлаждение наиболее горячих элементов газовых турбин позволяет снизить их температуру при достаточно высокой температуре газа. Однако применение охлаждения уменьшает полезную работу ГТУ, так как часть теплоты, отбираемая охлаждающей средой от газа, не может быть преобразована в механическую работу, В некоторых случаях, если используется теплота охлаждающей среды, возможно частичное уменьшение этих потерь.
Снижение температуры элементов газовой турбины в результате охлаждения позволяет поднять термодинамический потенциал цикла ГТУ за счет увеличения начальной температуры рабочего газа. Охлаждение целесообразно применять в том случае, когда выигрыш в кпд от возможного повышения начальных параметров рабочего газа больше потерь, вызываемых охлаждением.
Система охлаждения ГТУ должна удовлетворять следующим требованиям:
- температура металла охлаждаемых деталей должна быть такой, чтобы его прочностные свойства обеспечивали заданный ресурс работы;
- градиенты температур охлаждаемых деталей не должны превышать значений, при которых температурные напряжения достигают опасных значений или возникает возможность недопустимого коробления деталей;
- затраты энергии на охлаждение должны быть значительно ниже дополнительной полезной энергии, вырабатываемой ГТУ за счет увеличения начальной температуры рабочего тела.
Кроме того, система охлаждения газотурбинной установки не должна чрезмерно усложнять конструкцию турбины и схему ГТУ и, как следствие, повышать ее стоимость, требовать вмешательства обслуживающего персонала при эксплуатации ГТУ и должна надежно работать при пусках, остановках и на переходных режимах.
В качестве примера рассмотрим систему воздушного охлаждения мощной газовой турбины, работающей при температуре около 900°С (рис.1).
Рис.1. Схема системы охлаждения мощной газовой турбины
Воздух для охлаждения отбирается после компрессора и за двенадцатой и девятой его ступенями. Для охлаждения деталей турбины, работающих при высоких температурах, воздух подводится четырьмя потоками:
- поток I — воздух из напорного патрубка компрессора вводится перед соплами, первой ступени, создавая заградительное охлаждение дна межлопаточного канала;
- поток II — воздух из напорного патрубка компрессора (дополнительно охлажденный до температуры 176°С) идет к переднему концевому уплотнению, а затем — к первому ряду направляющих лопаток, диску первой ступени со стороны входа газов, внутренним элементам ротора и частично — к гребням дисков второй и третьей ступеней;
- поток III — воздух после двенадцатой ступени компрессора идет к обоймам направляющих аппаратов и гребням дисков второй и третьей ступеней;
- поток IV — воздух после девятой ступени компрессора идет к заднему торцу диска третьей ступени и к концевому уплотнению на выходе газов.
Такая система охлаждения обеспечивает работу установки в режиме, при котором температура металла ротора не превышает 315°С.
Легко ли диагностировать повреждение лопастей турбины?
В том случае, если вы заподозрили износ компонентов турбины, то вначале вы должны провести диагностику внутренних колес турбокомпрессора. Например, можете визуально осмотреть состояние колеса компрессора турбины, это можно сделать достаточно легко. Для этого вам надо отсоединить от самой турбины модуль подачи воздуха. В результате вы сможете внимательно рассмотреть износ лопастей компрессора.
Но чтобы сделать диагностику колеса турбины со стороны выпускной системы двигателя, вам для этого уже придется полностью снять турбокомпрессор с двигателя и полностью его разобрать.
Правда чаще всего повреждается колесо компрессора, куда поступает воздух с улицы. Повреждение колеса со стороны выхлопной системы может произойти только при попадании в турбину посторонних предметов из двигателя.
Например, в случае обрыва ремня ГРМ (в случае, когда клапана двигателя встретились с поршнями), в результате чего двигатель выходит из строя. В этом случае после некачественной очистки двигателя от стружки и от других компонентов разрушения запуск мотора может привести к повреждению турбины.
Признаки неисправностей турбокомпрессора | ||
---|---|---|
Симптом: | Проявления: | Что необходимо сделать: |
Свист турбонагнетателя |
При увеличении скорости слышен свист турбины. Возможно поврежден сам вал турбины. Свист вызван из-за металлического трения. |
Замена турбокомпрессора / Ремонт. |
Синий дым |
Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему. |
Замена турбокомпрессора / Ремонт. |
Увеличился расход топлива | Повреждение подшипников турбокомпрессора. Линия подачи масла в турбину неисправна или забита. | Проверьте маслопроводы турбокомпрессора и при необходимости замените их. |
Черный дым |
Возможно турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания образовывается неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего в автомобиле есть утечка поступаемого в двигатель воздуха. |
Проверьте шланги и соединение системы всасывания воздуха. Также проверьте линию подачи сжатого воздуха на герметичность и при необходимости замените поврежденный компонент. |
Потеря мощности I | Недостаток постоянной мощности. Компрессор может быть поврежден. Например, из-за сломанных лопастей турбина больше не может подавать достаточное количество воздуха в цилиндры. | Необходимы новые колеса компрессора. Также необходимо защитить систему подачи воздуха в турбину от попадания инородных вещей. |
Потери мощности II | Блок VTG загрязнен. В итоге работа лопаток турбины с изменяемой геометрией не эффективна. Например, из-за загрязнения лопаток может не хватать давления выхлопных газов. | Разобрать турбину и очистить лопатки от образования сажи. |
Чрезмерное давление наддува | Неисправен клапан регулирования давления наддува. Неисправность вакуумного блока регулировки работы клапана. | Замена вакуумного блока, очистка или замена клапана выхлопных газов. |
Шум от турбокомпрессора | Обратное давление в выхлопной системе слишком высокое. Повреждение колеса компрессора или колеса турбины. Утечка выхлопных газов. | Проверьте выхлопную систему на наличие повреждений. Проверьте компрессор турбины на повреждения. Устраните неисправность с помощью ремонта турбокомпрессора. |
Устройство системы турбонаддува
Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.
Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.
Составные части устройства турбонаддува:
- корпус компрессора;
- компрессорное колесо;
- вал ротора, или ось;
- корпус турбины;
- турбинное колесо;
- корпус подшипников.
Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.
Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.
Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…
Принцип работы
Первое, чем турбина отличается от механических нагнетателей-улиток – это привод. В случае турбины вращательное движение получается за счет преобразования энергии движения отработавших газов во вращательное движение
. В очередной раз отметим, что нагнетаемый атмосферный воздух должен охлаждаться – температура в турбине достаточно высока, чтобы воздух успел прогреться. Сам процесс довольно легко описать:
- Двигатель включается в работу – за счет сгорания топливовоздушной смеси образуются выхлопные газы;
- Газы отводятся через выпускной коллектор и движутся по специальному трубопроводу;
- Газы попадаются в горячую часть турбины и раскручивают крыльчатку;
- За счет вращения крыльчатки начинает вращаться и вал, на котором закреплена крыльчатка компрессора в холодной части турбины;
- Крыльчатка компрессора при вращении вызывает рост давления во впускном тракте;
- Воздух, затягиваемый в холодную часть турбины, движется к камерам сгорания;
- Воздух попадает в двигатель после охлаждения в интеркулере.
Как видите, все довольно просто. Важных моментов
здесь несколько. Во-первых, поступление достаточного объема выхлопных газов не происходит мгновенно . С этим связан основной недостаток турбонагнетателей. Во-вторых, в системе должен быть реализован отвод газов, энергия которых была задействована для создания крутящего момента . В-третьих, вращающиеся элементы турбины должны быть хорошо отцентрованы . Это сказывается как на общей эффективности работы турбины, так и на ее эксплуатационном ресурсе. Но и это еще не все! Турбина должна обеспечиваться маслом и правильно охлаждаться. Давайте разберемся подробнее.
Условия работы турбины
Температура выхлопных газов дизельного двигателя на выходе перед турбиной составляет в среднем 750-850 градусов по Цельсию. Бензиновые агрегаты имеют еще более разогретый выхлоп. Такие раскаленные газы движутся с большой скоростью и встречаются с турбинным колесом.
Турбокомпрессор отличается высокой производительностью и потребляет достаточно много энергии отработавших газов (в среднем около 25-30 кВт и более). Турбодизель с рабочим объемом 2.0 литра в режиме холостого хода потребляет около 800 литров воздуха за 60 секунд. В режиме максимальной мощности данный показатель доходит до 4 м3. Если учесть, что турбокомпрессор также нагнетает избыток давления до 1 атмосферы, тогда общий объем нагнетаемого устройством воздуха намного больше.
Во время работы ДВС на пиковых нагрузках турбинное колесо раскручивается до 150 тыс. об/мин и более, нагрев колеса достигает 800-900 градусов по Цельсию. После взаимодействия с турбинным колесом температура выхлопа заметно падает до средней отметки 400-500 градусов.
В режиме холостого хода отработавшие газы дизеля имеют температуру около 100 градусов по Цельсию и движутся с небольшой скоростью. Для эффективного вращения колеса турбины и параллельного вращения компрессорного колеса этой энергии достаточно только для того, чтобы турбокомпрессор не препятствовал проходу через него воздуха в объеме, который необходим для поддержания стабильной работы ДВС на холостых оборотах.
Схема турбины с изменяемой геометрией (VNT)
Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.
Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.
Признаки и неисправности турбокомпрессора
- Синий выхлопной дым – признак сгорания масла в цилиндрах мотора, попавшего туда из турбокомпрессора или же двигателя. Чёрный — значит, есть утечка воздуха, а выхлопной газ белого цвета указывает на засорение сливного маслоотвода турбонагнетателя.
- Причиной свиста является утечка воздуха на стыке выхода компрессора и мотора, а скрежет указывает на трущиеся элементы всей системы турбонаддува.
- Стоит также проверить все элементы турбины на двигателе, если она отключается или вовсе перестала работать.
90% проблем автомобильной турбины связаны с маслом.
В основе всех неисправностей турбокомпрессора – три причины
Нехватка и слабое давление масла
Возникает из-за протечки или пережима масляных шлангов, а также вследствие их неправильной установки к турбине. Приводит к повышенному износу колец, шейки вала, недостаточной смазке и перегреву радиальных подшипников турбины. Их придется менять.
5 секунд работы турбины дизельного двигателя без масла могут нанести непоправимый вред всему агрегату.
Загрязнение масла
Случается из-за несвоевременной замены старого масла или фильтра, попадания воды или топлива в смазку, использования некачественного масла. Приводит к износу подшипника, закупорке маслоподводных каналов, повреждению оси. Неисправные детали стоит заменить новыми. Густое масло тоже вредит подшипникам, так как дает осадок и снижает герметичность турбины.
Попадание постороннего предмета внутрь турбокомпрессора
Приводит к повреждению лопаток компрессорного колеса (следовательно, падает давление воздуха); лопаток турбинного колеса; ротора. Со стороны компрессора нужно заменить фильтр и проверить впускной тракт на герметичность. Со стороны турбины стоит заменить вал и проверить впускной коллектор.
Устройство турбины двигателя автомобиля: 1. компрессорное колесо; 2. подшипник; 3. актуатор; 4. штуцер подачи масла; 5. ротор; 6. картридж; 7. горячая улитка; 8. холодная улитка.
Это интересно: Замена тормозных трубок – о ремонте и профилактике
Принцип работы турбокомпрессора и его недостатки
Видео: Принцип работы турбокомпрессора (турбины)
Принцип работы турбонаддува достаточно прост: выхлопные газы поступают в камеру турбинного колеса и заставляет его вращаться. Вращаясь, он чрез ротор приводит в движение турбокомпрессор. Тот в свою очередь засасывает воздух, сжимает его и подает в интеркулер для охлаждения. После прохождения интеркулера воздух под давлением подается во впускной коллектор. Работа наддува контролируется и регулируется регулятором давления, который дозирует количество отработанных газов, поступающих в камеру турбинного колеса. Благодаря этому осуществляется возможность изменения производительности турбонаддува в зависимости от вращения коленчатого вала.
Но такая конструкция имеет один существенный недостаток – при резком открытии дроссельной заслонки турбонаддув не успевает обеспечить необходимое количество воздуха для подачи в цилиндры. Для этого ему требуется определенное время. Выливается это в образование негативного эффекта, который получил название «турбояма». То есть, водитель резко нажимает на педаль газа, рассчитывая резко ускориться, но из-за нехватки воздуха ускорения сразу не происходит. Автомобиль начнет набирать обороты только после того, как наддув обеспечит необходимое количество воздуха. Вслед за «турбоямой» возникает еще один негативный эффект – «турбоподхват». Происходит он после «турбоямы» и сопровождается увеличенным давлением в турбонаддуве из-за интенсивной работы компрессора.
Для решения проблемы появления существует несколько способов. Первый из них – использование комбинированного наддува (состоящего из механического нагнетателя и турбонагнетателя). На начальном этапе при резком нажатии на педаль газа давление в выпускном коллекторе обеспечивает механический нагнетатель, работа которого не зависит от выхлопных газов, после в работу вступает турбонагнетатель, а механический отключается.
Видео: Устройство и неисправности турбины
Вторым способом преодоления «турбоямы» является использование двойного турбонаддува, так называемого «twin-turbo». Двойной турбонаддув обычно применяется на V-образных двигателях.
И третий способ – использование турбонаддува с изменяемой геометрией. В такой турбине воздушный поток оптимизируется за счет изменения площади канала, по которому подается воздух.