Формула кпд (коэффициента полезного действия)

Техника безопасности

Проверить силу тока просто. Достаточно подключить мультиметр, в соответствии с правилами эксплуатации. Необходимо соблюдение инструкции, чтобы не нарушать технику безопасности:

Вам это будет интересно Работа со сварочным аппаратом

После использования мультиметрового прибора, кабели, которые были разрезаны соединяют при обесточенной цепи.

Повреждения исправляют изолентой

Мультиметр — это прибор, без которого просто невозможно обойтись в бытовых условиях и других областях. Имея даже самые минимальные знания по его работе, можно починить приборы. Зная показания, несложно определить их непригодность.

Условия работы генератора переменного тока

Частота вращения генератора

Использование генератора (создаваемая энергия на килограмм массы) увеличивается с ростом оборотов двигателя. Поэтому необ­ходимо использовать максимально высокое передаточное отношение между генерато­ром и коленчатым валом двигателя

Однако важно, чтобы при максимальных оборотах двигателя не превышались максимально допустимые обороты генератора. Макси­мально допустимые обороты автомобильных генераторов определяются расширением клювообразных полюсов и сроком службы шарикоподшипников

Типичные значения для максимальных оборотов автомобильных генераторов находятся в диапазоне 18 000 — 22 000 мин-1. Передаточное отношение для легковых автомобилей находится в пределах 1:2,2—1:3, а для грузовых автомобилей 1:5.

Охлаждение генератора

Потери при преобразовании механической энергии в электрическую приводят к нагреву деталей генератора. Для охлаждения боль­шинства современных автомобильных гене­раторов используется окружающий воздух в моторном отсеке. Если его недостаточно для охлаждения генератора, то подходящими решениями для адекватного охлаждения становятся нагнетание воздуха из более про­хладных мест и жидкостное охлаждение.

Вибрации двигателя

Генератор, в зависимости от условий мон­тажа и вибрационных характеристик дви­гателя, может подвергаться вибрационным ускорениям 500-800 м/с2. Таким образом, крепления и компоненты генератора под­вержены воздействию значительных сил. Поэтому совершенно необходимо избегать критических значений частоты собственных колебаний в генераторе.

Климат моторного отсека автомобиля

Генератор подвергается воздействию брызг воды, грязи, масла и распыленного топлива, а также соли, песка и гравия. Генератор должен защищаться от коррозии, чтобы можно было предотвратить образование путей утечки тока между деталями, находящимися под напря­жением.

Акустика генератора

Жесткие требования к уровню шума в совре­менных автомобилях и отличная плавность работы современных двигателей внутрен­него сгорания требуют тихо работающих генераторов. Наряду с фасками на пальцах генераторов с клювообразными полюсами, уменьшающими жесткое прерывание маг­нитного потока на краях пальцев, существуют и другие возможности уменьшения шума, создаваемого магнитами автомобильных ге­нераторов. Можно использовать следующее: во-первых, пять фаз в пентаграммном соеди­нении (рис. «Пятифазная обмотка статора с пентаграммным соединением с подключенным мостовым выпрямителем» ) и, во-вторых, две трехфазных системы, электрически смещенных на 30°.

Классификация

Существуют генераторы постоянного тока с независимым возбуждением обмоток, с самовозбуждением. Последние модели используют электричество, которое ими же вырабатывается. По способу объединения обмоток якорей альтернаторы делят на устройства с возбуждением следующих типов:

Схема генератора постоянного тока представлена на картинке 5.

С параллельным возбуждением

Чтобы электроприборы работали в нормальном режиме, необходимо стабильное напряжение, которое не зависит от изменений в общей нагрузке. Эта проблема решается методом настройки параметров возбуждения. В таких генераторах катушка подключена (через реостат) параллельно обмотке якоря. Реостат может замыкают обмотку. В противном случае при разъединении цепи возбуждения внезапно повысится ЭДС самоиндукции, что может повредить изоляционный материал. В состоянии непродолжительного замыкания энергия превращается в тепловую, чем предотвращается разрушение устройства.

Электромашины с возбуждением такого вида не требуют внешнего источника питания. Самовозбуждение обмоток происходит под действием остаточного магнетизма в сердечнике магнита. Последние, для улучшения описанного процесса, производят из стали. Самовозбуждение длится до тех пор, пока ток не станет максимальным, а электродвижущая сила не покажет номинальное значение.

Преимущество вышеописанных электрогенераторов в том, что на них почти не влияют электротоки при коротком замыкании.

С независимым возбуждением

Источниками питания для обмоток нередко стают аккумуляторы или же иные устройства. В машинах с малой мощностью применяются постоянные магниты, обеспечивающие присутствие главного магнитного потока. На валу альтернатора располагают микрогенератор (возбудитель), который вырабатывает электроток для возбуждения якорных обмоток. Для этой цели необходимо от 1 до 3 % номинального тока якоря. Изменение электродвижущей силы выполняется регулирующим реостатом.

Достоинство: на возбуждающий ток не имеет воздействия напряжение на зажимах.

С последовательным возбуждением

Последовательными обмотками вырабатывается ток, который равняется электротоку альтернатора. В случае холостого хода отсутствует нагрузка, поэтому возбуждение нулевое. Это обозначает, что регулировочные свойства не существуют.

В агрегате с последовательным возбуждением почти нет тока, если ротор вращается на холостых оборотах. Чтобы запустить возбуждение, требуется подключение нагрузки к зажимам устройства. Явная связанность напряжения с нагрузкой считается огромным минусом последовательных обмоток. Подобные агрегаты используются лишь для питания электрических приборов, у которых нагрузка постоянная.

Со смешанным возбуждением

Самые лучшие свойства собраны в конструкции агрегатов со смешанным возбуждением. Особенность устройств в том, что они состоят из двух катушек:

  • основная — подключена параллельным способом к обмоткам якоря;
  • вспомогательная — подключена последовательным способом.

В цепи основной присутствует реостат, который регулирует ток возбуждения. Процедура самовозбуждения генератора со смешанным типом такая же, как у агрегата с параллельными обмотками (в самовозбуждении не принимает участия последовательная обмотка, так как отсутствует исходный ток). А свойства холостого хода идентичны характеристикам генератору с параллельной обмоткой. Такие особенности разрешают настраивать напряжение на зажимах устройства.

Выбор мощности генератора

Чтобы правильно определить мощность генератора, необходимо рассчитать мощность нагрузки, работу которой будет обеспечивать электрогенератор. Мощность нагрузки – это суммарная мощность электроприборов, подключаемых одновременно к электрогенератору.

Самый простой и надежный способ узнать мощность каждого подключаемого прибора – посмотреть в паспорте на данный прибор. Также мощность может быть указана на самом приборе.

Обращаем Ваше внимание на то, что мощность приборов может быть указана в двух единицах и . Говоря языком потребителя: – полезная (номинальная) мощность, а – полная мощность

Причем на некоторых приборах указана мощность только в , на некоторых – и в , и в . Это значит, что для первой группы приборов номинальная и полная мощности одинаковы, для второй – нет.

Коэффициент полезного действия

Зная потери в машине, можно определить коэффициент полез­ного действия (к. п. д.) машины.

а) Коэффициент полезного действия генератора постоянного тока.

Для генераторов к. п. д. представляет собой отношение электрической полезной мощности к механической мощности на валу и определяется по формуле:

Механическую мощность на валу генератора можно представить как:

Электрическая полезная мощность генератора определяется по формуле:

где: ∑P — сумма всех потерь в машине;

U — напряжение на зажимах генератора;

I — ток, отда­ваемый генератором в сеть.

Тогда для генератора коэффициент полезного действия можно определить по формулам:

б) Коэффициент полезного действия двигателя постоянного тока.

Коэффициентом полезного действия двигателя постоянного тока называется отношение механической мощности на валу двигателя Р2 к подводимой к двигателю электрической мощности Р1.

В двигателях подводимая мощность Р1 определяется по формуле:

U — напряжение на зажимах двигателя;

I — ток, потребляемый двигателем.

Механическую мощность на валу двигателя можно представить как:

где: ∑P — сумма всех потерь в машине;

Тогда для двигателя коэффициент полезного действия можно определить по формулам:

Так как к. п. д. машины зависит от суммы потерь, то он — вели­чина непостоянная, т. е. зависит от нагрузки.

При х. х. машин, когда полезная мощность равна нулю, к. п. д. = 0.

По мере увеличения нагрузки к. п. д. машины быстро увеличивается.

Наибольшее значе­ние он имеет при нагрузке, равной (0,8-1) Рном когда постоянные потери равны переменным.

При значительных перегрузках вслед­ствие увеличения потерь в сопротивлениях цепи якоря к. п. д. снова снижается.

Рис.20.1. Зависимость к.п.д. машины от нагрузки

Современные элек­трические машины имеют высокий к. п. д.

Так, для машин постоян­ного тока:

мощностью 10 кВт к. п. д. η = 0,83- 0,87;

мощностью 100 кВт; η =0,884-0,93;

мощностью 1000 кВт η = 0,92-0,96.

Маши­ны малой мощности имеют меньшее значе­ние к. п. д., например для двигателя мощ­ностью 10 Вт η = 0,34-0,4

Дата добавления: 2014-12-24 ; просмотров: 1635 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ватт в ватте?

Единица мощности – ватт. Обычно мы видим, сколько ватт может обеспечить блок питания, на его этикетке. Большинство ПК уже имеют встроенный блок питания, поэтому при покупке нового компьютера это не проблема. Однако, если вы обновили или добавили новые компоненты к своим компьютерам, например, новый жесткий диск или новую систему охлаждения, то пора проверить мощность, которую может обеспечить блок питания вашего компьютера. Если общая мощность, необходимая компьютеру, больше, чем может обеспечить блок питания, он просто не будет работать. Теперь возникает вопрос: «Сколько ватт нужно моему компьютеру?» Это будет зависеть от общего количества энергии, необходимой компьютеру, в зависимости от мощности, необходимой каждому компоненту. Простые компьютеры на самом деле не требуют такой большой мощности, но сложные системы, например, используемые для игр,

Читать Ядра против потоков — в чем основные различия

Еще один непонятный вопрос для большинства потребителей: «Обеспечивает ли блок питания компьютер постоянную мощность?» Ответ – нет. Мощность, которую вы видите на корпусе блока питания или этикетках, указывает только на максимальную мощность, которую он теоретически может подать в систему. Например, теоретически блок питания мощностью 500 Вт может подавать на компьютер максимум 500 Вт. На самом деле, блок питания потребляет небольшую часть энергии для себя и распределяет мощность по каждому из компонентов ПК в соответствии со своими потребностями. Мощность, необходимая для компонентов, варьируется от 3,3 В до 12 В. Если общая мощность компонентов должна увеличиться до 250 Вт, он будет использовать только 250 Вт из 500 Вт, что даст вам накладные расходы на дополнительные компоненты или будущие обновления.

Кроме того, мощность, подаваемая блоком питания, варьируется в периоды пиковой нагрузки и простоя. Когда компоненты доведены до предела, например, когда видеоредактор максимизирует графический процессор для задач с большим количеством графики, ему потребуется больше энергии, чем когда компьютер используется для простых задач, таких как просмотр веб-страниц. Количество потребляемой мощности блока питания будет зависеть от двух вещей; количество энергии, необходимое для каждого компонента, и задачи, которые выполняет каждый компонент.

КПД и мощность электродвигателя

КПД и мощность — это то, на что в первую очередь стоит обратить внимание при выборе асинхронного электродвигателя АИР. Суть работы любого эл двигателя заключается в том, что электрическая энергия, с сопутствующими преобразованию потерями, превращается в механическую

Чем меньше потери при протекании данного процесса, тем выше его КПД и тем эффективнее эл двигатель

Но, при всей важности коэффициента полезного действия, не стоит забывать о мощности мотора. Ведь даже при чрезвычайно высоком КПД и выдаваемой им мощности может быть недостаточно для решения необходимых вам задач

Поэтому при покупке очень важно знать не только, чему равен КПД электродвигателя, но и какую полезную мощность он сможет выдать на своем валу. Оба эти значения должны быть указаны производителем. Порой бывает и такое, что нет доступа к паспорту мотора (например, если вы покупаете его “с рук”, что крайне не рекомендуется делать) и приходится самостоятельно вычислять столь важные параметры. Для начала стоит определить: что такое коэффициент полезного действия, или попросту КПД. И так, это отношение полезной работы к затраченной энергии.

Определение КПД электродвигателя

Получается, для того чтобы определить этот параметр необходимо сравнить выдаваемую им энергию с энергией, необходимой ему чтобы функционировать. Вычисляется КПД с помощью выражения:

η=P2/P1 где η — КПД

P2- полезная механическая мощность электромотора, Вт P1- потребляемая двигателем электрическая мощность, Вт;

Коэффициент полезного действия это величина, находящаяся в диапазоне от 0 до 1, чем ближе ее значение к единице, тем лучше. Соответственно, если КПД имеет значение 0,95 — это показывает, что 95 процентов электрической энергии будут преобразованы им в механическую и лишь 5 процентов составят потери. Стоит отметить, что КПД не является постоянной величиной, он может меняться в зависимости от нагрузки, а своего максимума он достигает при нагрузках в районе 80 процентов от номинальной мощности, то есть от той, которую заявил производитель мотора. Современные асинхронные электродвигатели имеют номинальный КПД (заявленные производителем) 0,75 — 0,95. Потери при работе двигателя в основном обусловлены нагревом мотора (часть потребляемой энергии выделяется в виде тепловой энергии), реактивными токами, трением подшипников и другими негативными факторами. Под мощностью мотора понимают механическую мощь, которую он выдает на своем валу. В целом же мощность — это параметр, который показывает, какую работу совершает механизм за определенную единицу времени.

КПД электродвигателя это очень важный параметр определяющий, прежде всего эффективность использования энергоресурсов предприятия. Как известно КПД электродвигателя значительно снижается после его ремонта, об этом мы писали в этой статье. При уменьшении коэффициента полезного действия будут соответственно увеличены потери электроэнергии. В последнее время набирают популярность энергоэффективные электродвигатели разных производителей, в России популярны моторы производства ОАО «Владимирский электромоторный завод». Любые асинхронные электродвигатели представлены в каталоге продукции. Дополнительную полезную информацию Вы можете посмотреть в каталоге статей.

Мощность генератора

Ребят вопрос то элементарный, достаточно вспомнить школьную формулу: P = I * U (мощность = сила тока умножить на напряжение).

Теперь вспоминаем напряжение в бортовой сети автомобиля, зачастую оно равняется 13,8 – 14,2В.

Также не трудно найти марку своего генератора, и узнать его характеристики, а именно силу тока которую он может выдавать. Зачастую на современных машинах, она колеблется от 80 до 140 Ампер.

Для примера возьмем среднюю величину в 100Ампер.

Этот показатель является пиковым для вашего автомобиля!

Однако стоит помнить еще об одном — об оборотах двигателя. Генератор вырабатывает свою пиковую мощность только при определенных оборотах шкива (который связан с двигателем).

«Пиковое значение» (в нашем случае в 1,38КВт) зачастую проявляется только от 2500 оборотов и выше. НА ХОЛОСТЫХ ОБОРОТАХ мощность куда ниже. Так на 800 – 1000 оборотах она будет примерно 75% от максимальной. Если ее определить в нашем случае, то 1380 Х 75% = 1035Ватт.

Все эти характеристики указывает производитель чуть ли не в инструкции к автомобилю.

КПД генератора переменного тока

КПД генератора представ­ляет собой отношение мощности, которая подается на какое-либо устройство, к мощ­ности на выходе. Потери неизбежны для всех процессов, при которых механическая энер­гия преобразуется в электрическую. Потери в генераторе с клювообразными полюсами классифицируются следующим образом (рис. «Распределение потерь генератора, рассчитанного на ток 220 А).

Потери в генераторе с клювообразными полюсами

Потери в меди обмоток статора и ротора

Омические потери в обмотках статора и об­мотке ротора называются потерями в меди. Они пропорциональны квадрату тока.

Потери в железе в пластинчатом сердечнике статора

Потери в железе — результат гистерезиса и вихревых токов, наводимых переменными магнитными полями в железе статора и ро­тора.

Потери вихревых токов на поверхности клювообразных полюсов

Потери вихревых токов на поверхности клю­вообразных полюсов вызваны колебаниями магнитного потока из-за наличия пазов в статоре.

Потери в выпрямителе генератора

Потери в выпрямителе вызываются падением напряжения на диодах. Их можно уменьшить и, соответственно, поднять КПД путем ис­пользования полупроводников с меньшим падением напряжения — например, высоко­эффективных диодов (HED).

Механические потери генератора

Механические потери включают трение, воз­никающее в роликовых подшипниках и кон­тактных кольцах, аэродинамическое трение в вентиляторе. Прежде всего, имеются потери мощности (необходимой для приведения в действие самого вентилятора) которые уве­личиваются с повышением частоты враще­ния.

К ним относятся и аэродинамические потери, вызванные вентилятором и клюво­образными полюсами.

В обычном режиме эксплуатации генератор ра­ботает в диапазоне частичной нагрузки. В этом случае КПД на средних оборотах составит 70-80 %. Использование более крупного (и более тяжелого) генератора позволяет ему работать в более благоприятном диапазоне частичной нагрузки при той же электрической нагрузке. Увеличение КПД, обеспечиваемое более крупным генератором, с избытком компенсирует потери в экономии топлива, связанные с большей массой. Однако следует учитывать более высокий момент инерции в ременном приводе.

Вопрос 4. КПД двигателя постоянного тока

В машинах постоянного тока при работе происходит потеря энергии, которая складывается из трех составляющих:

1) Потери в стали Рст

, возникающие в сердечнике якоря. При вращении якоря в его сердечнике индуктируются вихревые токи, а сталь сердечника непрерывно перемагничивается. На это затрачивается мощность. Потери в стали обращаются в тепло и нагревают сердечник якоря.

2) Потери энергии на нагревание проводов обмоток возбуждения и якоря проходящими по ним токами, называемые потерями в меди, — Робм

. Потери в обмотке якоря и в щеточных контактах зависят от тока в якоре, т. е. являются переменными — меняются при изменениях нагрузки.

3) Механические потери Рмех

, представляющие собой потери энергии на трение в подшипниках, трение вращающихся частей о воздух и щеток о коллектор. Эти потери зависят от частоты вращения якоря машины. Поэтому механические потери постоянны, не зависят от нагрузки.

Кпд машины в процентах

где — полезная мощность; — потребляемая машиной мощность.

При работе машины двигателем:

Потребляемая мощность: = UI, где U — напряжение питающей сети; I — ток, потребляемый двигателем из сети.

Полезная мощность:

= — Pст — Pобм — Pмех = UI — Pст — Pобм – Pмех.
Контрольные вопросы 1. Дать определение двигателю постоянного тока. 2. Объяснить принцип действия двигателя постоянного тока. 3. Объяснить правило левой руки и применить его для определения направления вращения якоря двигателя. 4. Рассказать какие способы возбуждения двигателей постоянного тока вам известны?

5. Рассказать о способах регулирования частоты вращения якоря двигателя постоянного тока.

6. Записать формулу для определения КПД работы машины.

7. Привести примеры использования двигателей постоянного тока в зависимости их рабочих характеристик.

8. Какие способы смягчения пусковых моментов вам известны.

9. Решить задачу:

Двигатель постоянного тока с параллельным возбуждением развивает полезную мощность на валу Р2 , потребляя из сети ток I при номинальном напряжении Uном. Ток в обмотке якоря Iя., в обмотке возбуждения Iв.. Частота вращения якоря п2 Двигатель потребляет из сети мощность Р1 Полезный вращающий момент двигателя М. В якоре двигателя наводится противо-ЭДС Сопротивление обмотки якоря Rя, обмотки возбуждения Rв. Суммарные потери мощности в двигателе Σр, а его КПД — η. Определить величины, отмеченные ? Р1, кВтР2 кВтΣр кВтUном В , ВI, АIя, АIв, АRя, ОмRв ОмМ н·м?n2 об/ минη ? ? ? ? ? ? ? 0,6

Значения показателя

В 1824 году инженер Карно дал определение КПД идеального двигателя, когда коэффициент равен 100%. Для трактовки понятия была создана специальная машина со следующей формулой: η=(T1 — Т2)/ T1. Для расчёта максимального показателя применяется уравнение КПД макс = (T1-T2)/T1x100%. В двух примерах T1 указывает на температуру нагревателя, а T2 — температуру холодильника.

На практике для достижения 100% коэффициента потребуется приравнять температуру охладителя к нулю. Подобное явление невозможно, так как T1 выше температуры воздуха

Процедура повышения КПД источника тока либо силового агрегата считается важной технической задачей. Теоретически проблема решается путём снижения трения элементов двигателя и уменьшения теплопотери

В дизельном моторе подобное достигается турбонаддувом. В таком случае КПД возрастает до 50%.

Мощность стандартного двигателя увеличивается следующими способами:

  • подключение к системе многоцилиндрового агрегата;
  • применение специального топлива;
  • замена некоторых деталей;
  • перенос места сжигания бензина.

Мощность и коэффициент полезного действия электродвигателей

Электрические двигатели имеют высокий коэффициент полезного действия (КПД), но все же он далек от идеальных показателей, к которым продолжают стремиться конструкторы. Все дело в том, что при работе силового агрегата преобразование одного вида энергии в другой проходит с выделение теплоты и неминуемыми потерями. Рассеивание тепловой энергии можно зафиксировать в разных узлах двигателя любого типа. Потери мощности в электродвигателях являются следствием локальных потерь в обмотке, в стальных деталях и при механической работе. Вносят свой вклад, пусть и незначительный, дополнительные потери.


Расчет КПД.

Магнитные потери мощности

При перемагничивании в магнитном поле сердечника якоря электродвигателя происходят магнитные потери. Их величина, состоящая из суммарных потерь вихревых токов и тех, что возникают при перемагничивании, зависят от частоты перемагничивания, значений магнитной индукции спинки и зубцов якоря. Немалую роль играет толщина листов используемой электротехнической стали, качество ее изоляции.

Механические и электрические потери

Механические потери при работе электродвигателя, как и магнитные, относятся к числу постоянных. Они складываются из потерь на трение подшипников, на трение щеток, на вентиляцию двигателя. Минимизировать механические потери позволяет использование современных материалов, эксплуатационные характеристики которых совершенствуются из года в год. В отличие от них электрические потери не являются постоянными и зависят от уровня нагрузки электродвигателя. Чаще всего они возникают вследствие нагрева щеток, щеточного контакта.

Падает коэффициент полезного действия (КПД) от потерь в обмотке якоря и цепи возбуждения. Механические и электрические потери вносят основной вклад в изменение эффективности работы двигателя.

Добавочные потери

Добавочные потери мощности в электродвигателях складываются из потерь, возникающих в уравнительных соединениях, из потерь из-за неравномерной индукции в стали якоря при высокой нагрузке. Вносят свой вклад в общую сумму добавочных потерь вихревые токи, а также потери в полюсных наконечниках. Точно определить все эти значения довольно сложно, поэтому их сумму принимают обычно равной в пределах 0,5-1%. Эти цифры используют при расчете общих потерь для определения КПД электродвигателя.

Будет интересно Что такое короткое замыкание

КПД и его зависимость от нагрузки

Коэффициент полезного действия (КПД) электрического двигателя это отношение полезной мощности силового агрегата к мощности потребляемой. Этот показатель у двигателей, мощностью до 100 кВт находится в пределах от 0,75 до 0,9. для более мощных силовых агрегатов КПД существенно выше: 0,9-0,97. Определив суммарные потери мощности в электродвигателях можно достаточно точно вычислить коэффициент полезного действия любого силового агрегата. Этот метод определения КПД называется косвенным и он может применяться для машин различной мощности.

Комментарий эксперта

Лагутин Виталий Сергеевич

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Задать вопрос

Для маломощных силовых агрегатов часто используют метод непосредственной нагрузки, заключающийся в измерениях потребляемой двигателем мощности. КПД электрического двигателя не является величиной постоянной, своего максимума он достигает при нагрузках около 80% мощности.

Достигает он пикового значения быстро и уверенно, но после своего максимума начинает медленно уменьшаться. Это связывают с возрастанием электрических потерь при нагрузках, более 80% от номинальной мощности. Падение коэффициента полезного действия не велико, что позволяет говорить о высоких показателях эффективности электродвигателей в широком диапазоне мощностей.

Сколько выдает генератор под нагрузкой

Основным источником электроэнергии в автомобиле является генератор. Он стартует одновременно с пуском двигателя, после чего вырабатывает энергию и заряжает аккумулятор. При его выходе из строя, заряда аккумулятора не хватит на долгую эксплуатацию автомобиля, поэтому водитель обязан следить за состоянием генератора. Проблем, из-за которых генератор может выйти из строя в процессе эксплуатации, масса. Это могут быть как механические неполадки, так и электрические. Неисправность генератора также проявляется различными симптомами, среди которых наиболее распространены:

  • Появление посторонних звуков, исходящих из генератора;
  • Проблемы с аккумулятором: разрядка, перезарядка, выкипание электролита;
  • Снижение яркости фар головного освещения при увеличении оборотов. Такая ситуация считается нормальной, если она возникает кратковременно при переключении на первую передачу с режима холостого хода на «холодном» двигателе;
  • Сигнализация контрольной лампы о разряде аккумулятора во время движения автомобиля;
  • Сбои в работе электроники, в том числе тусклое горение фар и слабый звуковой сигнал.

Какие генераторы лучше поставить на ВАЗ?

Ниже представлены рекомендации для разных моделей машин отечественного производства.

ВАЗ — 2106

Г-222 – более мощный и стабильный в работе автогенератор по сравнению со стандартным Г-221. Имеет встроенное реле зарядки АКБ и повышенную отдачу (50 А против 42 А), подойдет в «шестёрку» при условии использования щёток от Г-221 или изменения схемы подключения.

ВАЗ — 2107

Наиболее простой вариант модернизации электросети – устройство Г-222. В ВАЗ-2107 генератор устанавливают без дополнительных проблем. В этот автомобиль подойдёт устройство с силой тока в 55А от модели 2108. Единственная доработка, которая понадобится при монтаже, заключается в использовании дополнительного силового реле.

ВАЗ — 2110


Штатный генератор ВАЗ-2110 – КЗАТЭ с силой тока 80 А. Имеет заводской индекс – 5102.3771. Рассчитываемый пробег – 140 000 км. В качестве альтернативных вариантов стоит рассмотреть устройства 94.3701 и на 120 А. Второй генератор на ВАЗ 2110 с инжекторным двигателем лучше установить в машины с большим количеством дополнительного оборудования, помимо видеорегистратора и мощной акустической системой.

ВАЗ — 2112 и 2114

В машины ВАЗ-2112 и ВАЗ-2114 лучше установить генератор от Приоры или Калины с кондиционером. Это устройство выдаёт мощность в 115 А, что на 35 А больше по сравнению с заводским оборудованием. Единственная трудность, с которой столкнётся владелец 2114 при монтаже, заключается в необходимости замены шкива.

В качестве альтернативы можно рассмотреть автогенератор бренда Eldix мощностью 115 А. Однако к нему сложно найти запчасти, что вызовет определённые трудности даже при небольших поломках.

Машины с инжекторными моторами оснащают генераторами с отдачей 80А. Это стандартная модель 94.3701. Для увеличения мощности рассмотрите вариант с КЗАТЭ 9402.3701 90А, который подходит по типу крепежа и имеет аналогичный шкив. Если необходимо, обеспечит работоспособность большого количества энергопотребляющих устройств.

Видео:ГЕНЕРАТОР ОТ ПРИОРЫ НА ВАЗ 2112.

В машину Lada Priora можно установить генератор российского или зарубежного производства. Один из лучших вариантов в плане надёжности работы – Bosch на 110 А. В качестве отечественного аналога можно рассмотреть КЗАТЭ 9402.3701-14 на 115 А.

Для большинства автомобилей Волжского завода лучше брать российские генераторные установки. Среди главных достоинств отечественной продукции отметим низкую стоимость, простоту технического обслуживания и ремонта, большое количество запчастей в магазинах. Более качественная альтернатива – оборудование немецкой марки Bosch. Лучше избегать покупки дешёвых китайских электрогенераторов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: