Что означает rpm на двигателе

Примеры

  • На граммофонных пластинках скорость вращения указывается в оборотах в минуту (об. в мин., об/мин). Стандартные скорости вращения 1623, 3313, 45 или 78 об/мин (518, 59, 34, или 1,3 об/с соответственно).
  • Современные стоматологические бормашины имеют скорость вращения до 800 000 об/мин (13 300 об/с).
  • Секундная стрелка часов вращается с частотой 1 об/мин.
  • Проигрыватели компакт-дисков производят чтение со скоростью 150 кБ/с и, следовательно, при скорости вращения диска у внутреннего края примерно 500 об / мин (8 об/с) и 200 об / мин (3,5 об/с) на внешней границе. Приводы компакт дисков имеют скорость вращения, кратную этим цифрам, даже если используется переменная скорость чтения.
  • DVD-проигрыватели обычно также читают диски с постоянной линейной скоростью. Скорость вращения изменяется от 1 530 об/мин (25,5 об/с), при чтении у внутреннего края, и 630 об/мин (10,5 об/с) на внешней стороне диска. DVD-приводы также работают на скорости, кратной вышеназванным цифрам.
  • Барабан стиральной машины может вращаться со скоростью от 500 до 2000 об/мин (8–33 об/с) во время отжима.
  • Турбина генератора ТЭС вращается со скоростью 3000 об/мин (50 об/с) или 3600 об/мин (60 об/с), в зависимости от страны (см. ). Вал генератора гидроэлектростанции может вращается медленнее: до 2 об/с (при этом частота сети 50 Гц получается за счет наличия большего количества полюсов катушек статора).
  • Двигатель легкового автомобиля работает, как правило, на скорости 2500 об/мин (41 об/с), обороты холостого хода около 1000 об/мин (16 об/с), а максимальные обороты 6000—10 000 об/мин (100—166 об/с).
  • Воздушный винт самолёта обычно вращается со скоростью между 2000 и 3000 об/мин (30-50 об/с).
  • Компьютерный жесткий диск с интерфейсами ATA или SATA вращается со скоростью 5400 или 7200 об/мин (90 или 120 об/с), за редким исключением 10 000 об/мин, а серверные жёсткие диски диски с интерфейсами SCSI и SAS используют скорость 10 000 или 15 000 об/мин (160 или 250 об/с).
  • Двигатель болида формулы один может развить 18 000 об/мин (300 об/с) (по регламенту сезона 2009).
  • Центрифуга по обогащению урана вращается со скоростью 90 000 об/мин (1500 об/с) или быстрее..
  • Газотурбинный двигатель вращается со скоростью десятки тысяч оборотов в минуту. Турбины для моделей самолетов могут разгоняться до 100 000 об/мин (1700 об/с), а самые быстрые и до 165 000 об/мин (2750 об/с).
  • Типичный 80-мм компьютерный вентилятор вращается со скоростью 800—3000 об/мин и питается от 12 В постоянного тока.
  • Турбокомпрессор может достигнуть скорости вращения 290 000 об/мин (4800 об/с), при том, что 80 000—200 000 об/мин (1000—3000 об/с) используются при спокойной езде.
  • Скорость вращения
      1. . DVD Technical Notes. Moving Picture Experts Group (MPEG) (21 июля 1996). Дата обращения 30 мая 2008.
      2. . electricityforum.com. Дата обращения 24 сентября 2006.
      3.  (недоступная ссылка). jetcat.com. Дата обращения 19 июля 2006.

Нестандартный параметр RPM

Есть также на рынке модели со скоростью вращения шпинделя 15000 оборотов в минуту. Как вы догадались, там время задержек еще ниже – около 2 мс, а среднее время поиска равно 3.8 мс. Это позволяет обеспечить доступ к данным за 5.8 мс. Следовательно, диски с большим RPM имеют низкое время поиска нужной информации, за счет чего обеспечивается быстрый обмен между хранилищем информации и системой.

Однако важно заметить, что при доступе к данным большого размера разница в производительности между дисками с большим и низким параметрами RPM будет несущественная, так как задержки на доступ к информации будут отсутствовать вообще

Основные характеристики батареек

С терминологией разобрались, теперь посмотрим, какими бывают батарейки и чем они отличаются друг от друга.

Форм-фактор

Современные батарейки – и гальванические элементы, и батареи на их основе – выпускаются в различных форм-факторах. Наиболее распространенные – цилиндрические и дисковые. Некоторые батареи могут иметь прямоугольную форму.

Наиболее популярные типоразмеры гальванических элементов и батарей

Что касается аккумуляторов, то они могут в точности повторять форму и размер гальванических элементов, но могут быть и оригинальной формы. На фото ниже слева направо можно увидеть цилиндрический аккумулятор формата АА на 3.7 вольта (но не на 1.5, как обычная пальчиковая батарейка), дисковый, в точности повторяющий форму литиевого гальванического элемента и дисковый оригинальной формы (таблетка).

Аккумуляторы, как и гальванические элементы, могут выпускаться в разных форм-факторах

Типы батареек

По типу электролита и материалу электродов гальванические элементы можно разделить на:

Солевые. Элементы этого типа имеют электроды на основе марганца и цинка, в качестве электролита используется соль – хлорид аммония. Устройства отличаются низкой электрической емкостью и недолговечностью, но имеют небольшую стоимость.

Щелочные. В элементах этого типа для электродов используются те же материалы, но в качестве электролита применяется щелочь – гидроксид калия. Батарейки этого типа имеют повышенную емкость и повышенный срок службы. Они способны развивать высокие питающие токи, но стоят в несколько раз дороже солевых элементов. Нередко щелочные батарейки называют алкалиновыми или алкалайновыми.

Литиевые. Анод этих элементов изготовлен на основе лития, катод же и электролит подбираются в зависимости от необходимого выходного напряжения, которое может варьироваться от 1.5 до 3.0 В в зависимости от назначения источника тока. Литиевые гальванические элементы (не путать с литиевыми аккумуляторами) имеют высокую емкость, долговечны (работают годами), но дороже щелочных.

Литиевая пальчиковая батарейка (гальванический элемент)

Серебряно-цинковые. Эти батарейки обычно выпускаются в форме таблетки. Их можно встретить в наручных часах и подобной малогабаритной экономичной технике. Это компактный и долговечный источник тока, но стоит он 1довольно дорого (относительно емкости) и не обладает большой электрической емкостью.

Выходное напряжение

Выходное напряжение всех солевых и щелочных гальванических элементов составляет 1.5 В. Серебряно-цинковые «таблетки» выдают те же 1.5 В. Литиевые элементы, как указывалось выше, в зависимости от типа катода и электролита могут иметь на выходе напряжение от 1.5 до 3.0 В.

Никель-кадмиевые (Ni-Cd) и никель-металлогидридные (Ni-MH) перезаряжаемые батарейки (аккумуляторы) выдают 1.2 В. Этот тип аккумуляторов наиболее популярен и часто используется в качестве замены пальчиковых (формат АА) и мизинчиковых (ААА) гальванических элементов.

Никель-кадмиевые (слева) и никель-металлогидридные аккумуляторы формата АА и ААА

У никель-цинковых (Ni-Zn) аккумуляторов на выходе 1.6 В.

В последнее время широкое распространение получили литий-ионные и литий-железо-фосфатные аккумуляторы. Первые выдают 3.7 В, вторые — 3.2 В. Они могут иметь тот же форм-фактор, что и солевые или щелочные батарейки, но из–за разницы выходных напряжений одни заменить другими нельзя.

Одни тахометры в автомобилях указывают обороты двигателя в формате Х100, а некоторые в Х1000: разъяснения

Почему в автомобилях тахометры имеют разное обозначение оборотов двигателя

Большинство автомобилей уже долгие годы оснащаются тахометрами, которые указывают на число оборотов двигателя в минуту. Тахометр необходим, чтобы водители не превышали максимальное число оборотов двигателя на каждой передаче

Но обращали ли вы внимание, что не все тахометры одинаковы? Нет, мы не о том, где начинается красная зона оборотов двигателя. В некоторых машинах вы можете увидеть разное обозначение оборотов двигателя

Например, во многих старых машинах на тахометре вы можете увидеть шкалу значений оборотов двигателя 10, 20, 30, 40 и т. д. В более современных автомобилях число оборотов двигателя указано в виде числовых значений 1, 2, 3, 4 и т. д. Но почему существует два разных типа приборов, измеряющих число оборотов двигателя?

Для начала давайте посмотрим внимательно на два тахометра, имеющих разные обозначения: один из них число оборотов двигателя указывает числами 1, 2, 3, 4 и т. д., тогда как другой имеет значения 10, 20, 30, 40 и т. д.

Во-первых, эти значения не говорят о точном количестве оборотов двигателя. В зависимости от типа применяемой шкалы значений число оборотов, указанное стрелкой тахометра, нужно умножить на число, которое обычно также указывается на тахометре

Обратите внимание на фото выше. Тахометр с цифрами 1, 2, 3, 4 и т

д. имеет обозначение Х1000, что означает, что указанное стрелкой значение нужно умножить на 1000. Так вы получаете реальное число оборотов двигателя в минуту. При обозначении числа оборотов двигателя 10, 20, 30, 40 и т. д. нужно умножить значение на 100 (о чем и говорит метка Х100 на тахометре).

Например, вот тахометр для авиационного двигателя:

Этот авиационный тахометр охватывает диапазон работы мотора от 0 до 3500 об/мин. Шкала прибора имеет маркировку в виде 0, 5, 10, 15, 20, 25, 30, 35

Также обратите внимание на надпись Х100, которая говорит, что число оборотов двигателя на тахометре нужно умножать на 100

А вот тахометр для автомобиля. здесь мы видим, что значение на тахометре нужно умножать на 1000. Маркировка шкалы на тахометре имеет формат 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (другими словами, каждая цифра – это 1000 оборотов двигателя в минуту).

С этим разобрались. Но почему автопроизводители используют тахометры с различной шкалой оборотов двигателя?

Здесь вопрос более сложный. В большинстве случаев сегодня в автомобилях тахометры имеют одинаковое обозначение (Х1000). И только иногда некоторые автопроизводители устанавливают на свои автомобили тахометры с другим обозначением (Х100). Чаще всего таким образом автомобильная компания хочет выделить свой автомобиль из массы других. Также в некоторых случаях это может быть своеобразный дизайнерский ход.

Также тахометры, имеющие обозначение в формате Х100, использовались на старых машинах, но иногда используются и на современных автомобилях, в которые устанавливались не высокооборотистые моторы. Например, если машина имеет максимальные обороты двигателя 4500-5000 об/мин, то нет смысла использовать тахометр со значениями 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (в формате Х1000), так как половина значений прибора не будет использована.

Для тех, кому интересно, вот несколько фотографий с тахометрами, которые использовались в старых отечественных автомобилях:

Установка, обновление и удаление пакетов RPM

Обычно для установки нового пакета в дистрибутивах на основе Red Hat вы используете команды или , которые могут разрешить и установить все зависимости пакетов.

Вы всегда должны предпочитать использовать или при установке, обновлении и удалении пакетов.

Перед установкой пакета RPM вы должны сначала загрузить пакет в свою систему с помощью браузера или инструментов командной строки, таких как или .

При установке пакетов RPM убедитесь, что они созданы для вашей системной архитектуры и вашей версии CentOS . Будьте особенно осторожны при замене или обновлении важных системных пакетов, таких как glibc, systemd или других служб и библиотек, которые необходимы для правильного функционирования вашей системы.

Только root или пользователи с привилегиями sudo могут устанавливать или удалять пакеты RPM.

Чтобы установить пакет RPM с , используйте параметр , за которым следует имя пакета:

Параметр указывает показывать подробный вывод, а параметр показывает индикатор выполнения, отмеченный хешем.

Вы можете пропустить загрузку и указать URL-адрес RPM-пакета команде :

Чтобы обновить пакет RPM, используйте параметр . Если пакет не установлен, он будет установлен:

Если пакет, который вы устанавливаете или обновляете, зависит от других пакетов, которые в настоящее время не установлены, отобразит список всех недостающих зависимостей. Вам придется скачать и установить все зависимости вручную.

Чтобы установить пакет RPM без установки всех необходимых зависимостей в системе, используйте параметр :

Чтобы удалить (стереть) пакет RPM, используйте параметр :

Параметр также полезен, когда вы хотите удалить пакет, не удаляя его зависимости:

Параметр указывает запускать команду установки или удаления, фактически ничего не делая. Он только показывает, будет ли команда работать или нет:

Основные параметры

  • Питание драйвера 7-15 В постоянного тока
  • Потенциометр для управления скоростью двигателя
  • Частота ШИМ по умолчанию 10.582 кГц (5.291 кГц – 164 кГц)

М/с MC3PHAC — это монолитный интеллектуальный контроллер, разработанный специально для удовлетворения потребности в недорогих 3-фазных системах управления электродвигателем переменного тока с регулировкой скорости вращения. Устройство адаптируется и настраивается в зависимости от его параметров. Оно содержит все активные функции, необходимые для реализации части управления с открытым контуром. Всё это делает MC3PHAC идеально подходящей для устройств, требующих поддержки управления двигателем переменного тока.

В состав MC3PHAC входят защитные функции, состоящие из контроля напряжения шины постоянного тока и входа неисправности системы, которые немедленно отключат модуль ШИМ при обнаружении неисправности системы.

Все выходные сигналы TTL уровня. Вход для блока питания 5-15 В постоянного тока, постоянное напряжение на шине должно быть в пределах 1.75 — 4,75 вольта, DIP-переключатель предусмотрен на плате для установки под двигатели с частотой 60 или 50 Гц, перемычки помогают установить полярность выходного ШИМ-сигнала, то есть активный низкий или активный высокий уровень, что позволяет использовать эту плату в любом модуле, так как выход можно установить активный низкий или высокий. Потенциометр PR2 помогает регулировать скорость двигателя. Для изменения базовой частоты, времени отключения ШИМ, других возможных параметров — изучайте даташит. Файлы платы — в архиве

Управление скоростью. Синхронная частота электродвигателя может быть задана в режиме реального времени для любого значения от 1 Гц до 128 Гц регулировкой потенциометра PR2. Коэффициент масштабирования составляет 25,6 Гц на вольт. Обработка 24-битным цифровым фильтром для того чтобы увеличить стабильность скорости.

Управление ускорением. Ускорение двигателя может быть задано в режиме реального времени в диапазоне от 0,5 Гц/сек до 128 Гц/сек, путем регулировки потенциометра PR1. Коэффициент масштабирования составляет 25,6 Гц/секунду на вольт.

15.2.7. Проверка

При проверке пакета информация о файлах, установленных из пакета, сравнивается с информацией из оригинального пакета. Помимо прочего, при такой проверке проверяется размер, сумма MD5, разрешения, тип, владелец и группа владельца каждого файла.

Проверку пакета выполняет команда rpm -V. Вы можете указать пакет, который хотите проверить, используя любой из перечисленных параметров выбора пакета. Простым примером проверки является команда rpm -V foo, которая проверяет, что все файлы пакета foo находятся там, куда они были изначально установлены. Например:

  • Чтобы проверить пакет, содержащий конкретный файл, выполните:

    rpm -Vf /usr/bin/vim
  • Чтобы проверить ВСЕ установленные пакеты:

    rpm -Va
  • Чтобы сравнить установленный пакет с файлом RPM-пакета:

    rpm -Vp foo-1.0-1.i386.rpm

    Эта команда может быть полезна, если вы сомневаетесь в целостности баз данных RPM.

Если проверка проходит успешно, никакие сообщения на экран не выводятся. В случае обнаружения каких-либо нарушений, вы увидите сообщения об этом. Для каждого несоответствия на экран будет выведена строка из восьми символов ( c обозначает файл конфигурации), а затем имя файла. Каждый из восьми символов обозначает результат сравнения одного атрибута файла со значением атрибута, записанного в базе данных RPM. Единственная точка (.) означает, что тест пройден. Следующие символы обозначают ошибки при выполнении определённых проверок:

  • 5 — контрольная сумма MD5

  • S — размер

  • L — символическая ссылка

  • T — дата изменения файла

  • D — устройство

  • U — пользователь

  • G — группа

  • M — режим (включая разрешения и тип файла)

  • ? — файл не удалось прочитать

Если вы увидели такие сообщения, вы должны решить, будете ли вы удалять или переустанавливать пакет, или исправлять проблему другим способом.

Что такое шпиндель

Шпиндель — единая ось в жестком диске, на которой установлено несколько магнитных пластин. Эти пластины закреплены на шпинделе на строго определенном расстоянии. Расстояние должно быть таким, чтобы при вращении пластин считывающие головки могли читать и записывать на диск, но при этом не касались поверхности пластин.

Чтобы диск нормально функционировал, двигатель шпинделя должен обеспечивать стабильное вращение магнитных пластин на протяжении тысяч часов. Поэтому неудивительно, что иногда проблемы с диском связаны именно с заклиниванием шпинделя, а вовсе не с ошибками в файловой системе.

Двигатель отвечает за вращение пластин, и это позволяет работать жесткому диску.

Общие сведения о двигателях АИР

Асинхронные электродвигатели серии АИ созданы специалистами стран, входящих в состав международной организации «Интерэлектро». Данная серия считается базовой, на основе которой были разработаны агрегаты в модифицированном и специализированном исполнении. Мощность таких двигателей составляет широкий диапазон, начиная от 25 Вт и заканчивая 400 кВт. Высота оси вращения также колеблется в пределах 45-355 мм.

Мощности и высоты осей вращения в агрегатах АИ исполнены в двух вариантах – Р и С. Отсюда и возникла аббревиатура АИР вместе с другой аббревиатурой АИС. Первый вариант использовался еще при Советском Союзе, а второй принят европейским электротехническим комитетом по стандартизации. Этими нормами руководствуются все зарубежные фирмы, поэтому на внутреннем российском рынке используются двигатели АИР, а на экспорт отправляются АИС. Каждый асинхронный электродвигатель АИР по своей мощности на одну ступень превышает мощность АИС при одинаковой высоте оси вращения.

  • Базовое. Включает в себя символику, в которой определяется серия, мощность и частота вращения двигателя. Например, маркировка АИР200М6, соответствует серии АИ с увязкой по варианту Р, ось вращения расположена на высоте 200 мм, М – габариты (длина) корпуса по установочным размерам, 6 – количество полюсов.
  • Основное. В этом случае базовое обозначение дополнительно включает электрическую и конструктивную модификацию, используемый вид защиты и охлаждения. Кроме того, учитывается специализированное исполнение, в том числе и в соответствии с условиями окружающей среды. Следовательно, маркировка АИРБС100М4НПТ2 будет расшифровываться следующим образом: АИР100М4 – базовое обозначение, Б – исполнение закрытого типа, охлаждение естественное без обдува, С – повышенное скольжение, Н – низкий уровень шума, П – установочные размеры повышенной точности, Т – использование в тропическом климате, 2 – категория размещения.
  • Полное. Кроме основного обозначения содержит дополнительные конструктивные и электрические характеристики. В этом случае к основному обозначению добавляется величина напряжения 220/380В, частота сети – 60, исполнение по способу монтажа и концу вала – IM2181, выводное устройство и количество штуцеров – К3-Н-3, вид фланцевого щита – F-100.

Файлы .htaccess

Настройка через лучше избежать в данном случае, если Вы все же решили его использовать, то сделайте следующее:

и смените на . Так же добавьте:

для исключения в отображении на сайте.

Для можно использовать опции:

А вообще смените стандартное имя .htaccess на другое с помощью параметра :

Тут можно используя модуль Apache настроить внешний вид. Завернуть в тег и используя html5, css3, javascript, jquery, bootstrap, backbone, awesome сделать конфетку, как это сделал я:

Вот что будет при использовании в браузере без поддержки javascript или с отключенным:

Сами файлы web интерфейса нужно будет скрыть как от vsftpd так и от демонстрации на сайте, делается аналогичными способами что и для сокрытия файла.

Настроить внешний вид листинга через или в nginx:

  1. http://www.oglib.ru/apman/mod/mod_autoindex.html
  2. https://habr.com/post/353478/

Настройка доступа по ftp

Запускаем службу и прописываем ее в автозапуск:

Настройка службы:

Настроем SeLinux:

Перезапустим службу:

В случае использования файла — продублируйте, чтобы файл был надежно защищен от доступа по ftp:

Что такое bidirectional (двунаправленный) DSHOT?

Bidirectional DSHOT — это новая функция в Betaflight 4.x, которая позволяет контроллеру полета получать точную телеметрию оборотов вращения двигателя по сигнальному каналу ESC. Но сигнал поступает без использования дополнительных проводов и каналов.

Bidirectional DSHOT будет работать только на регуляторах оборотов (ESC) с поддержкой 32 битных прошивок: BLHeli_32 или BLHeli_S, в которых также есть функция поддержки телеметрии DSHOT.

Регуляторы оборотов на BLHeli_32 уже изначально умеют передавать телеметрию в полетный контроллер (температуру, eRPM, ток) по отдельному сигнальному проводу. Эта стоковая телеметрия передается достаточно медленно и не может использоваться для RPM-фильтрации. Но двунаправленная телеметрия работает на гораздо больших скоростях, чем стандартная и она подходит для RPM-фильтрации.

Что такое тахометр?

Тахометр – это прибор, который измеряет частоту вращения коленчатого вала автомобиля (сегодня мы говорим именно об автомобильном тахометре, однако есть и лодочные, мотоциклетные варианты, там измерения происходят немного по-другому, там измеряется частота вращения других элементов – роторов, шестерней и т.д.). Частота вращения обозначается в оборотах в минуту, на импортных автомобилях можно увидеть аббревиатуру «RPM», на отечественных «об/м» или «min -1», также по кругу циферблата идут цифры это или 1,2,3, и так далее, либо 10, 20, 30 и так далее.

RPM x 1000 (показатель)

тахометр Chevrolet AVEO

Простыми словами если вы видите, при заведенном двигателе, величину «1» или «10» (на разных тахометрах по-разному), то это говорит вам о том, что двигатель работает с частотой 1000 оборотов в минуту. Если вы надавите на педаль газа, то обороты двигателя возрастут, и соответственно цифры на тахометре также будут повышаться 2 – 3 – 4 и т.д., то есть 2000 – 3000 – 4000 об/мин. То есть с такими оборотами крутиться коленчатый вал в двигателе!

Понятие

Аббревиатура RPM (Rounds per minute) на русский язык дословно переводится как «Обороты в минуту». Это единица обозначает скорость вращения шпинделя жесткого диска, но само по себе понятие ничего не говорит обычному пользователю. RPM жесткого диска играет роль в производительности системы, и чем выше будет скорость вращения, тем быстрее будет работать вся система в целом. Чаще всего в характеристиках к жесткому диску указывается этот параметр, и между двумя твердыми носителями желательно выбирать тот, у которого RPM будет выше.

Если взять два одинаковых по всем параметрам диска, но с разной скоростью вращения шпинделя, то можно сразу заметить существенную разницу в производительности системы.

Как это работает?

Чтобы понять точнее, что это – RPM, необходимо понять принцип работы самого устройства. При запросе определенной информации блок магнитных головок переходит к запрошенной дорожке. На это требуется определенное время для поиска (Seek latency). После того как считывающие головки перемещаются в нужный сектор, необходимо дождаться поворота дисков, чтобы нужный участок оказался под считывающей головкой. Этот участок времени называют задержкой на вращение. Именно этот параметр зависит от скорости вращения шпинделя, и чем он будет выше, тем задержка на вращение будет ниже.

Обе задержки (на перемещение шпинделя и на вращение дисков) определяют скорость доступа системы к данным. Многие программы тестирования производительности просчитывают данный параметр и выводят его под строками «Access to data time». Это позволяет определить реальную скорость работы диска. Данный параметр непосредственно влияет на производительность всей системы. Сегодня есть множество мощных ноутбуков, которые оснащаются мощными видеокартами и процессорами, большим объемом оперативной памяти. Но при этом совместно с хорошим «железом» используются очень медленные жесткие диски со скоростью вращения в 5400 оборотов в минуту. В результате все эти мощные комплектующие не работают на полную мощность из-за низкой скорости доступа к данным. Так что RPM диска важен наравне с частотой процессора и шириной шины видеокарты.

Как узнать скорость вращения шпинделя?

Определить этот параметр проще простого – он всегда указывается на наклейке на самом устройстве. Достаточно открыть корпус своего системного блока и взглянуть на наклейку. Там может быть много непонятных параметров, но всегда есть одна из следующих строк:

  1. RPM HDD: 5400.
  2. RPM: 7200.
  3. RPM: 10000.

Если жесткий диск скрыт под корпусом ноутбука, который достаточно сложно вскрыть, то можно воспользоваться специальной программой тестирования «железа».

Популярными являются следующие:

Они доступны для скачивания из интернета совершенно бесплатно. Запустив одну из указанных программ, можно быстро найти информацию об устройстве хранения данных. Там будут детально отображены параметры жесткого диска. Нас в первую очередь интересует строка «Rotation Rate» и значение напротив нее. В русской версии программы Aida64 необходимо в левой части нажать на «Хранение данных» – «Хранение данных Windows», затем в верхней части нужно выделить жесткий диск, после чего снизу появится информация о нем, в том числе и строка «Скорость вращения».

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

15.2.4. Обновление

Обновление пакета похоже на его установку. Введите в приглашении оболочки следующую команду:

rpm -Uvh foo-2.0-1.i386.rpm

В процессе обновления пакета RPM автоматически удаляет все старые версии пакета foo. В действительности, вы можете всегда использовать параметр -U для установки пакетов, так как он работает, даже если предыдущая версия пакета не установлена.

Подсказка
 

Не стоит использовать параметр -U для установки пакетов ядра, так как при этом RPM заменит предыдущий пакет ядра. Это не влияет на работающую систему, но если после следующей перезагрузки запустить новое ядро не удастся, никакого другого ядра для загрузки вместо него не будет.

Параметр -i добавляет ядро в меню загрузчика GRUB (/etc/grub.conf). Подобным образом, при удалении старого, ненужного ядра, запись этого ядра удаляется из GRUB.

Так как RPM выполняет умное обновление пакетов с файлами конфигурации, вам может встретиться подобное сообщение:

saving /etc/foo.conf as /etc/foo.conf.rpmsave

Это сообщение означает, что изменения файла конфигурации могут оказаться не совместимыми снизу вверх с новым файлом конфигурации, входящим в пакет, поэтому RPM сохранил ваш первоначальный файл и установил новый. Вы должны проанализировать различия между двумя файлами конфигурации и разобраться с ними как можно скорее, чтобы ваша система смогла продолжить нормальную работу.

Обновление в самом деле представляет собой комбинацию удаления и установки, поэтому во время обновления RPM вы можете встретить ошибки и удаления, и установки, плюс ещё одну. Если RPM считает, что вы пытаетесь обновить пакет с более старой версией, он сообщает примерно следующее:

package foo-2.0-1 (which is newer than foo-1.0-1) is already installed

Чтобы, несмотря на это, принудительно обновить пакет, укажите параметр --oldpackage:

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

  • интеллектуальное управление двигателем
  • стабильно устойчивая работа двигателя
  • огромные возможности современных ПЧ:
  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
  • многочисленные защиты (двигателя и самого прибора)
  • входы для датчиков (цифровые и аналоговые)
  • различные выходы
  • коммуникационный интерфейс (для управления, мониторинга)
  • предустановленные скорости
  • ПИД-регулятор

Минусы использования однофазного ПЧ:

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

  • более низкая стоимость по сравнению со специализированными ПЧ
  • огромный выбор по мощности и производителям
  • более широкий диапазон регулирования частоты
  • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

  • необходимость предварительного подбора ПЧ и двигателя для совместной работы
  • пульсирующий и пониженный момент
  • повышенный нагрев
  • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Какая оптимальная и максимальная скорость вращения

У современных HDD стандарта SATA III почти всегда шпиндели вращаются с частотой 7200 RPM. Для доступа к нужным ячейкам, головке требуется приблизительно 12 мс.

p, blockquote 13,0,0,0,0 –>

У винчестеров серии WD Raptor этот показатель еще выше — 10 000 оборотов за минуту. Итоговое время доступа к информации 8,5 мс.

p, blockquote 14,0,0,0,0 –>

У хардов со скоростью шпинделя 5400 (например, некоторые бюджетные SATA III или предыдущие поколения этого формата) для доступа к данным требуется приблизительно 16 мс. Незначительно она отличается у чуть более быстрых винчестеров, с частотой вращения шпинделя 5900 об/мин.Есть ли разница для обычного пользователя? Я считаю, что нет — несколько миллисекунд вообще ничего не решают. При этом цена более быстрого винчестера, как правило, дороже — от 10 долларов и больше.

p, blockquote 15,0,0,1,0 –>

Учитывая, что на производительность компьютера влияет еще огромный перечень факторов, «шустрость» шпинделя — не тот параметр, по поводу которого стоит слишком сильно заморочиться.

p, blockquote 16,0,0,0,0 –>

Какая этому есть разумная альтернатива, позволяющая ускорить чтение данных? Конечно же, SSD и пока только он.

p, blockquote 17,0,0,0,0 –>

p, blockquote 18,0,0,0,0 –>

p, blockquote 19,0,0,0,0 –>

p, blockquote 20,0,0,0,0 –> p, blockquote 21,0,0,0,1 –>

и если стоит выбор между: Seagate; Barracuda 5900.12 (ST31000520AS); 5900 rpm; 32Mb cache; SATA 3Gb/s NCQ и Seagate/Maxtor; DiamondMax23 (STM31000528AS); 7200 rpm; 32Mb cache; SATA 3Gb/s какой лучше взять?

Заключение

При выборе жесткого диска в первую очередь важно учитывать параметр производительности, который определяется скоростью вращения шпинделя в первую очередь. К сожалению, большинство пользователей смотрят на емкость дисков, хотя это не самое важное

Лучше отдать предпочтение винчестеру с емкостью 500 Гб и скоростью вращения шпинделя 7200 об/мин, чем выбирать диск на 1 Тб и с параметром RPM 5400. А вообще, сегодня нужно отходить от использования подобных систем, поскольку SSD-накопители превосходят устаревшие устройства HDD во всем.

Привет, друзья! Сегодня давайте обсудим скорость вращения шпинделя жесткого диска: 5400 или 7200 — что лучше и почему. В этом посте мы с вами выясним, какие бывают скорости, есть ли разница в работе разных HDD и на что может влиять эта характеристика.

p, blockquote 1,0,0,0,0 –>

p, blockquote 2,0,0,0,0 –>

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: