Кпд двигателя- отличия бензинового и дизельного двигателя

Базовые компоненты ESTEC

Бензиновый двигатель Газель Некст 2.7 л. устройство ГРМ, технические характеристики Evotech 2.7

Основными конструктивными особенностями ESTEC являются цикл Аткинсона, геометрическая степень сжатия 13,5:1 и система EGR с жидкостным охлаждением (обычный 1NR-FE имеет степень сжатия 11,5:1 и внутреннюю рециркуляцию выхлопных газов). Система бесступенчатого регулирования фаз VVT-iE с электроприводом является ключевым элементом в реализации цикла Аткинсона. Она позволяет быстро и с высокой точностью регулировать подъем впускных клапанов и избежать затруднений, возникающих из-за разницы температуры и давления масла при холодном пуске и на прогретом моторе.

В системе рециркуляции выхлопных газов используется эффективный охладитель и быстродействующий клапан. Кроме того, впускной трубопровод, охладитель и клапан непосредственно соединены между собой для уменьшения образования конденсата от охладителя.

Оптимизированная форма впускных каналов обеспечивает быстрое наполнение цилиндров, а создаваемое завихрение способствует улучшенному сгоранию смеси. Чтобы удовлетворить требованиям, как к производительности, так и к расходу топлива, выпускной коллектор выполнен по схеме 4-2-1. Это позволяет уменьшить количество остаточных газов в цилиндрах двигателя.

Восстановление производительности

Увеличение степени сжатия до 13,5:1 снизило крутящий момент со 104 Нм до 96 Нм. Чтобы восполнить эту потерю, Toyota применила выпускной коллектор измененной формы, уменьшающий количество остаточных газов и температуру в цилиндре; новую водяную рубашку, поддерживающую оптимальную температуру поверхности цилиндров; оптимизацию времени впрыска. Комбинация этих мер (из которых главную роль играет измененный выпускной коллектор) позволила повысить крутящий момент до 105 Нм.

При малых нагрузках из-за работы охлаждаемой EGR происходят чрезмерные колебания крутящего момента. Для устранения этого недостатка используются система регулирования выпускных клапанов (Exhaust VVT) и внутренняя рециркуляция выхлопных газов. При средних и больших нагрузках работа Exhaust VVT приостанавливается, а шаг клапана системы EGR увеличивается.

Охлаждение является эффективной мерой против снижения крутящего момента у двигателей с высокой степенью сжатия. Однако одновременно это приводит к увеличению расхода топлива из-за повышения трения и потерь на охлаждение. В обычных моторах верхняя часть цилиндра нагревается больше, чем нижняя. Из-за неравномерного нагрева увеличивается трение в цилиндре. В ESTEC новая водяная рубашка со специальной прокладкой выравнивает температуру в разных частях поверхности цилиндра, снижая потери на трение и возможность возникновения детонации.

Цикл Аткинсона

Цикл Аткинсона

В двигателе, работающем по циклу Аткинсона, на такте впуска впускной клапан закрывается не вблизи НМТ, а значительно позже. Это дает целый ряд преимуществ.

Во-первых, снижаются насосные потери, т. к. часть смеси, когда поршень прошел НМТ и начал движение вверх, выталкивается назад во впускной коллектор (и используется затем в другом цилиндре), что снижает в нем разрежение. Горючая смесь, выталкиваемая из цилиндра, также уносит с собой часть тепла с его стенок.

Так как длительность такта сжатия по отношению к такту рабочего хода уменьшается, то двигатель работает, по так называемому, циклу с увеличенной степенью расширения, при котором энергия отработанных газов используется более длительное время, т. е., с уменьшением потерь выпуска. Таким образом,получаем лучшие экологические показатели, экономичность и больший КПД, но меньшую мощность.

Как устроен тепловой двигатель

Любой тепловой двигатель состоит из трех основных частей:

В основе работы двигателя лежит циклический процесс.

Нагреватель с помощью, например, сгорания топливной смеси выделяет большое количество теплоты и передает ее рабочему телу.

Рабочее тело, например пар, газ или жидкость, при нагревании расширяется и совершает работу, к примеру, вращает турбину или перемещает поршень.

Холодильник нужен, чтобы вернуть рабочее тело в начальное состояние. Он поглощает часть энергии рабочего тела. Таким образом обеспечивается цикличность, и тепловой двигатель работает непрерывно.

Идеальный тепловой двигатель Карно

Модель двигателя Карно разработал французский физик С. Карно.

Рабочая часть двигателя Карно — поршень в заполненном газом цилиндре. Двигатель Карно — идеальная машина, она возможна только в теории. Поэтому в ней силы трения между поршнем и цилиндром и тепловые потери считаются равными нулю.

Механическая работа максимальна, если рабочее тело выполняет цикл, состоящий из двух изотерм и двух адиабат. При изотермическом расширении работа газа совершается за счет внутренней энергии нагревателя. При адиабатном процессе — за счет внутренней энергии расширяющегося газа. В этом цикле нет контакта тел с разной температурой, поэтому исключена теплопередача без совершения работы. Такой цикл называют циклом Карно.

Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0).

Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q=A).

Функционирует двигатель Карно следующим образом:

Чем больше разница между температурами нагревателя и холодильника, тем больше КПД двигателя Карно.

Степень сжатия

Эффективность двигателей внутреннего сгорания зависит от нескольких факторов, наиболее важным из которых является степень расширения. Для любого теплового двигателя работа, которую можно извлечь из него, пропорциональна разнице между начальным давлением и конечным давлением во время фазы расширения. Следовательно, повышение начального давления является эффективным способом увеличения извлекаемой работы (уменьшение конечного давления, как это делается в паровых турбинах путем выпуска в вакуум, также эффективно).

Степень расширения (рассчитанная исключительно из геометрии механических частей) типичного бензина (бензин) составляет 10: 1 ( топливо премиум-класса ) или 9: 1 (обычное топливо), при этом некоторые двигатели достигают отношения 12: 1 или более. . Чем больше степень расширения, тем более эффективен двигатель в принципе, и более высокий коэффициент сжатия / расширения в принципе требуется бензин с более высоким октановым числом , хотя этот упрощенный анализ осложняется разницей между фактической и геометрической степенями сжатия. Высокое октановое число подавляет тенденцию топлива почти мгновенно сгорать (известную как детонация или детонация ) в условиях высокого сжатия / высокой температуры. Однако в двигателях, в которых используется сжатие, а не искровое зажигание за счет очень высоких степеней сжатия (14-25: 1), таких как дизельный двигатель или двигатель Бурка , высокооктановое топливо не требуется. Фактически, для этих целей предпочтительны топлива с более низким октановым числом, обычно оцениваемые по цетановому числу , поскольку они легче воспламеняются при сжатии.

В условиях частичного открытия дроссельной заслонки (т. Е. Когда дроссельная заслонка не полностью открыта) эффективная степень сжатия меньше, чем при работе двигателя на полностью открытой дроссельной заслонке, из-за того простого факта, что поступающая топливно-воздушная смесь ограничена и не может заполниться. камеру до полного атмосферного давления. КПД двигателя ниже, чем при работе двигателя на полностью открытой дроссельной заслонке. Одним из решений этой проблемы является перенос нагрузки в многоцилиндровом двигателе с некоторых цилиндров (путем их деактивации) на остальные цилиндры, чтобы они могли работать при более высоких индивидуальных нагрузках и, соответственно, с более высокими эффективными степенями сжатия. Этот метод известен как переменное смещение .

Большинство бензиновых (бензиновый, цикл Отто ) и дизельных ( дизельный цикл ) двигателей имеют степень расширения, равную степени сжатия . Некоторые двигатели, в которых используется цикл Аткинсона или цикл Миллера, достигают повышенной эффективности за счет степени расширения, превышающей степень сжатия.

Дизельные двигатели имеют степень сжатия / расширения от 14: 1 до 25: 1. В этом случае общее правило более высокого КПД от более высокого сжатия не применяется, потому что дизели с коэффициентом сжатия более 20: 1 являются дизелями с косвенным впрыском (в отличие от прямого впрыска). В них используется форкамера, чтобы сделать возможной работу на высоких оборотах, необходимую в легковых / легковых автомобилях и легких грузовиках. Тепловые и газодинамические потери в форкамере приводят к тому, что дизели с прямым впрыском (несмотря на их более низкую степень сжатия / расширения) более эффективны.

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильныемашины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту  более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Параметры КПД в электродвигателях

Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:

В данной формуле p1 – это подведенная электрическая мощность, p2 – полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.

Мощность и крутящий момент

Когда показатели рабочего объема одинаковые, мощность атмосферного бензинового двигателя выше, но достигается только при более высоких оборотах. Агрегат нужно сильнее «крутить», при этом потери возрастают, соответственно увеличивается расход топлива. Кроме этого, стоит упомянуть крутящий момент, под воздействием которого повышается сила, которая передается от двигателя на колеса и способствует движению автомобиля. Бензиновые двигатели выходят на максимальный уровень крутящего момента лишь высоких оборотах.

Атмосферный дизель с такими же параметрами достигает пика крутящего момента лишь при низких оборотах. Это способствует меньшему расходу топлива, необходимого для выполнения работы, в результате чего, КПД более высокий и топливо расходуется экономнее.

В равнении с бензином, дизельное топливо образует больше тепла, так как температура сгорания дизтоплива значительно выше, что способствует более высокой детонационной стойкости. Получается, у дизельного мотора полезная работа, произведенная на конкретном количестве топлива гораздо больше.

КПД тепловой машины

Тепловой двигатель Карно — это теоретическая модель идеального теплового двигателя, показывающая, как наилучший идеальный агрегат способен постоянно работать в цикле из четырех процессов, называемых циклом Карно.

Идеальный тепловой двигатель физика Карно работает на газовой среде, заключенной в цилиндре с поршнем. Газ берет энергию от источника тепла, расширяется и выталкивает поршень наружу. Когда поршень возвращается в цилиндр, он сжимает и нагревает газ, поэтому газ завершает цикл с параметрами по давлению, объему и температуре, с которых начинал.

Карно показал, что максимальная эффективность, обозначаемая символом «η» — это коэффициент полезного действия, или КПД, может быть достигнута только тепловым двигателем Карно.

КПД теплового двигателя, можно определить формулой: η = (T h — T c) / T h или η = 1 — T c / T h, где:

  • η — эффективность работы теплового двигателя или КПД;
  • T h — температура горячего источника;
  • T c -температура холодного источника.

Заключение, к которому пришел Карно: эффективность двигателя, как реального, так и теоретического, зависит от максимальной Tmax и минимальной температуры среды Tmin, в которой он работает, и может быть описана формулой: η = (Tmax-Tmin) / Tmax

Для создания этих условий на практике, например, на тепловой станции, специально устанавливают градирни в виде большого водяного охладителя, для того чтобы максимально охлаждать конденсат от паровой турбины, в этом случае КПД станции значительно повышается, количество теплоты через парогенератор растет и снижается стоимость единицы выработки тепловой и электрической энергии.

Мощность и КПД

Мощность механизма или устройства равна работе, совершаемой в единицу времени. Работа(A) измеряется в Джоулях, а время в системе Си – в секундах. Но не стоит путать понятие мощности и номинальной мощности. Если на чайнике написана мощность 1 700 Ватт, это не значит, что он передаст 1 700 Джоулей за одну секунду воде, налитой в него. Это мощность номинальная. Чтобы узнать η электрочайника, нужно узнать количество теплоты(Q), которое должно получить определенное количество воды при нагреве на энное количество градусов. Эту цифру делят на работу электрического тока, выполненную за время нагревания воды.

Величина A будет равна номинальной мощности, умноженной на время в секундах. Q будет равно объему воды, умноженному на разницу температур на удельную теплоемкость. Потом делим Q на A тока и получаем КПД электрочайника, примерно равное 80 процентам. Прогресс не стоит на месте, и КПД различных устройств повышается, в том числе бытовой техники.

Напрашивается вопрос, почему через мощность нельзя узнать КПД устройства. На упаковке с оборудованием всегда указана номинальная мощность. Она показывает, сколько энергии потребляет устройство из сети. Но в каждом конкретном случае невозможно будет предсказать, сколько конкретно потребуется энергии для нагрева даже одного литра воды.

Например, в холодной комнате часть энергии потратится на обогрев пространства. Это связано с тем, что в результате теплообмена чайник будет охлаждаться. Если, наоборот, в комнате будет жарко, чайник закипит быстрее. То есть КПД в каждом из этих случаев будет разным.

КПД в механике

Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

Запоминаем!КПД не может быть больше 100%. В реальной жизни и 100 не встречается, но больше сотни даже в задачах нет. Это значит, что если в задаче получается значение больше 100%, то мы в ответ пишем 100. И никак иначе.

КПД

η = (Aполезная/Aзатраченная) * 100%

η — коэффициент полезного действия

Aполезная — полезная работа

Aзатраченная — затраченная работа

Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.

Давайте разберемся на примере задачи.

Задача

Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с^2

Запишем формулу КПД.

η = (Aполезная/Aзатраченная) * 100%

Теперь задаем два главных вопроса:

Ради чего все это затеяли?

Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.

Потенциальная энергия

Еп = mgh

Еп — потенциальная энергия

m — масса тела

g — ускорение свободного падения [м/с^2]

h — высота

На планете Земля g ≃9,8 м/с^2

За счет чего процесс происходит?

За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

Механическая работа

А = FS

A — механическая работа

F — приложенная сила

S — путь

Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

η = Eп/A * 100% = mgh/FS * 100%

Подставим значения:

η = 4*9,8*2/15*12 * 100% = 78,4/180 * 100% ≃ 43,6 %

Ответ: КПД процесса приблизительно равен 43,6 %

Подробнее о потерях

Если сравнивать бензиновый и дизельный и ДВС, можно сказать что КПД бензинового мотора находится на более низком уровне – в пределах 20-25 %. Это обусловлено рядом причин. Если, к примеру, взять поступающее в ДВС топливо и «перевести» его в проценты, то получится как бы «100% энергии», которая передается мотору, а дальше, потери КПД:

  1. Топливная эффективность. Далеко не все потребляемое топливо сгорает, его большая часть уходит с отработанными газами. Потери на этом уровне составляют до 25% КПД. Сегодня, конечно, топливные системы усовершенствуются, появился инжектор, но и это не решает проблему на 100%.
  2. Второе – это тепловые потери. Часть тепла уходит из ДВС с выхлопными газами, кроме этого, мотор прогревает себя и ряд других элементов: свой корпус, жидкость в ДВС, радиатор. На все это приходится еще в пределах 35%.
  3. Третье, на что расходуется КПД – это механические потери. К ним относятся составляющие силового агрегата, где есть трение: шатуны, кольца, всякого рода поршни и т.д. Также сюда можно отнести потери, обусловленные нагрузкой от генератора, к примеру, чем больше электричества он вырабатывает, тем сильнее он притормаживает вращение коленвала. Конечно, различные смазки для ДВС играют свою роль, но все-таки полностью проблему трения они не решают, а это еще дополнительные потери до 20 % КПД.

Таким образом, в остатке КПД не более 20%. Сегодня существует бензиновые варианты, у которых показатель КПД несколько увеличен – до 25%, но, к сожалению, их не так много. К примеру, если автомобиль расходует 10 л топлива на 100 км, то всего лишь 2 л уйдут на работу двигателя, а все остальные – это потери.

Конечно, есть вариант увеличить мощность за счет расточки головки, но к нему прибегают довольно редко, поскольку это вносит определенные изменения в конструкцию ДВС.

Конструкторы постоянно стремятся увеличить КПД как бензинового, так и дизельного агрегатов. Увеличение количества выпускных/впускных клапанов, управление топливным впрыском (электронное), дроссельная заслонка, активное использование систем изменения фаз газораспределения и другие эффективные решения позволяют значительно повысить КПД. Конечно, в большей степени это относится к дизельным установкам.

С помощью таких усовершенствований современный дизель способен практически полностью сжечь дизтопливо в цилиндре, выдав максимальный показатель крутящего момента. Именно низкие обороты означают незначительные потери во время трения и возникающее в результате этого сопротивление. По этой причине дизельный двигатель является одним из производительных и экономичных, КПД которого довольно часто превышает отметку в 50%.

Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

От чего зависит КПД?

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.

Это интересно: Топливный фильтр Ford Focus 2

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Где теряется эффективность

Забегая вперёд можно констатировать, что для бензиновых двигателей КПД равен примерно 25 процентам. Почему так мало, и чем обусловлены такие цифры? Причины здесь в потерях: если взять некое количество топлива, и обозначить его ста процентами чистой энергии, передающейся мотору, то можно проследить все потери.

  • Для начала следует разобрать топливную эффективность. Все мы в курсе, что топливо сгорает не полностью, и некоторая его часть просто выходит в виде отработанных газов и вместе с ними. А это уже потеря примерно четверти эффективности, то есть – минус 25%. Даже инжектор и другие современные системы не решают этого вопроса, хоть и стали очень эффективными.
  • Далее идут тепловые потери. Мотор греет себя, воздух, другие элементы и узлы, к примеру, радиатор, охлаждающую жидкость, свой корпус, а также выхлоп. В этом месте эффективность теряет ещё около 35%.
  • Немало процентов забирают механические потери. Это поршни, шестерни, кольца, подшипники и прочие элементы и узлы, где присутствует трение. Сюда же относим и нагрузки генератора, который при выработке электроэнергии заметно тормозит коленвал. Несмотря на то, что смазочные материалы стали гораздо эффективнее, вынь да положь ещё двадцать процентов потерь.

И что у нас остаётся в остатке? А всего 20%! Понятно, что это средний показатель, и бензиновые двигатели бывают более эффективными, но насколько – может ещё пять-семь процентов, не больше. Да и двигателей таких совсем немного. Итого из залитых десяти литров топлива, что автомобиль съедает на сто километров пробега, на полезную работу уходить всего два с половиной литра, а остальные семь-восемь литров попросту уходят в потери.

Читать дальше: Резина на трактор т 25

Лучшие двигатели внутреннего сгорания эффективны на 25%

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: