Проверка мегомметром сопротивления изоляции двигателя
Мы смотрим на прибор для измерения сопротивления изоляции, называемый «Мегомметр». Назначение этого прибора — проверить сопротивление обмоток таких устройств, как электродвигатель, используя достаточно высокое напряжение. Вы видите три предела настроек для измерения: 250 вольт, 500 вольт и 1000 вольт. Нам нужны такие высокие напряжения, чтобы мы могли обнаружить определенные типы неисправностей. Я собираюсь показать это, используя двигатель мощностью 5 кВт. Это неисправный двигатель, он был снят при обслуживании, потому что имеет замыкание на землю одной из обмоток. Я покажу, как это проверить, с помощью мегомметра. Сначала я собираюсь взять зажим земли мегомметра, и присоединить его к корпусу двигателя. Далее прямо здесь смотрим на трехфазные обмотки на выходе из распределительной коробки двигателя. У меня есть синий, оранжевый и белый провод, и я собираюсь измерить сопротивление моим измерителем сопротивление изоляции между этими фазами и землей. При проведении измерений соблюдаем технику безопасности, потому что во время работы мегомметр выдает высокое напряжение, Я соединю измерительный щуп прибора и оголенный конец фазного провода, щуп надо удерживать только одной рукой за изолированную часть. Для запуска мегомметра нажмите на оранжевую кнопку. Итак, делаем замеры . нажав кнопку, мы видим, что стрелка качнулась до упора вправо. Так как прибор стоит на оранжевом диапазоне измерений, мы будем считывать показания по верхней части шкалы, и стрелка в правой части шкалы означает нулевое значение Ом. Это неисправность, мы не должны иметь ноль Ом. Между фазовой обмоткой и корпусом должно быть очень большое сопротивление. Я сделаю это снова на другой фазе обмотки, я присоединю к ней щуп и нажму кнопку — вы видите, что она также показывает ноль. И, конечно на последней обмотке будут такие же показания. Я говорю — конечно, потому что это не имеет значения, какая обмотка замкнула на корпус. Это измерение можно сделать на любом выводе фазной обмотки, так как они соединены вместе внутри двигателя, и пробой в любом месте обмотки даст одинаковые показания сопротивления изоляции на корпус. Теперь, чтобы доказать вам, что высокое напряжение действительно имеет значение и имеет значение для наших измерений, я переключу прибор в низковольтный диапазон. В зеленом режиме, прибор работает как обычный ом метр. И как обычный ом метр он использует очень низкое напряжение для проверки сопротивление. Чтобы показать вам, как это работает я присоединю зажим земля к корпусу двигателя и вы что стрелка остается на левой стороне шкалы, потому что на зеленой шкале «справа» бесконечность, и «слева» ноль . Итак, при «КЗ» стрелка будет на левой стороне шкалы и при «обрыве» — стрелка будет в правой части шкалы при этом низком значении выставленного напряжения. Помня об этом, я снова соединяю щуп с фазной обмотклй . и нажимаю кнопку «Проверить»
Обратите внимание, что стрелка ушла вправо, мы помним, что в это означает «обрыв», и это указывает, что обмотка хорошая. Просто, чтобы убедиться, что я отсоединю щуп и нажму еще раз кнопку, стрелка остается справа, прибор показывает «разомкнуто»
Другими словами — короткое замыкание на корпус не обнаруживается в режиме пониженного напряжения, но может быть обнаружено в режиме высокого напряжения. Я присоединю щуп еще раз — просто чтобы доказать, что это работает, щуп присоединен — я нажимаю кнопку, стрелка поворачивается вправо, что означает нулевое значение Ом или низкое сопротивлением. В режиме высокого напряжения, я отсоединю щуп, чтобы посмотреть, что происходит, — стрелка сдвигается влево, что означает «большое сопротивление». Итак, я ясно вижу, что есть неисправность в этом моторе при использовании высокого напряжения, но я не вижу неисправности при низкое значении напряжения. И именно в этом уникальная ценность измерителя сопротивления изоляции под названием мегомметр. _ Источник
Обмотка электродвигателя: лучшие схемы соединения и подключения. Инструкция как сделать и прозвонить обмотку своими руками
Электрический двигатель постоянно работает на больших мощностях, поэтому неудивительно, что механизм часто выходит из строя. Больше всего страдает так называемая обмотка — расположенная в пазах и соединенная на концах заворачивающими кольцами медная, алюминиевая или бронзовая проволока.
При скачках напряжения, гидравлических ударах, перегревах из-за превышения допустимой нагрузки изоляция на обмоточном слое нарушается, а происходящее замыкание плавит металлические стержни.
А вся необходимая для этих действий информация — вплоть до пошаговой инструкции — представлена ниже.
Какой должна быть намотка
Обмотка — это кусок проводника, зафиксированный кольцами в корпусе двигателя. Ее установка требует соблюдения ряда условий:
- Проволока однородная на всем покрываемом участке;
- Форма и площадь сечения проводника соответствуют друг другу;
- Поверх наносится слой изоляции (лака);
- Соединение должно обеспечивать надежный контакт.
Если хоть одно из требований нарушено, то происходящие в двигателе процессы работают на износ, теряя мощность, обороты и ломаясь.
В большинстве случаев схема соединения обмоток двигателя представлена в виде звезды или треугольника, однако существуют и другие варианты. Концы проводников подключают на специальные внешние колодки с клеммами, редко соединения наблюдаются внутри корпуса.
Возможные неполадки
Обмотка достаточно хрупкий элемент мотора, поэтому его нестабильная работа может вылиться во многие неисправности:
- Обрыв провода и прекращение передачи тока;
- Короткое замыкание из-за поврежденной изоляции;
- Замыкание между отдельными витками, их самостоятельное «отключение» от системы;
- Повреждение изоляции.
Как определить неисправность
На представленных фото обмотки электродвигателей видно, что нередко поломку можно заметить невооруженным взглядом: провода плавятся, чернеют, присутствует влага, запах гари, сломанные детали. В случае обнаружения неприятных признаков сомнения о необходимом ремонте отпадают, а движок отправляется в ремонтную мастерскую.
Помимо осмотра существуют и другие способы, как проверить обмотку электродвигателя, если отсутствуют внешние «симптомы». Для этого требуется специальный прибор, который в домашних условиях можно заменить обычным мультиметром. К примеру, сообщить о проблемах с обмоткой может следующее:
Сравнить токи на фазах двигателя под нагрузкой (если механизм исправен, то значения будут одинаковыми).
Измерить показатели на различных значениях тока на каждом участке с обмоткой, занести сведения в таблицу или представить в виде графика. Сравнить данные, которые в нормальном режиме не должны иметь сильные отклонения от единой схемы.
Метод с шариком
- Подключить симметричное напряжение от трех фаз с низким номинальным током.
- Присоединить к каждой фазе понижающий трансформатор, имеющие одинаковые рабочие значения.
- Подать напряжение (и ни в коем случае не допустить превышения токовой нагрузки!).
- Одновременно ввести в созданное магнитное поле небольшой стальной шарик (диаметром 1-3 см).
- Проследить за совершаемыми предметом действиями: если шарик крутится синхронно — все исправно, если остановился — в этом месте замыкание.
Как произвести обмотку
Пошаговая инструкция для обмотки двигателя выглядит следующим образом:
- Произвести осмотр механизма по представленным выше схемам, выявить проблемные участки, наметить фронт работы.
- Приготовить расходные материалы (подходящий вид проволоки, изоляции и соединяющей пропитки).
- Подготовить к работе кантователь (станок для намотки).
- Надежно зафиксировать на машине стартер движка.
- Произвести соответствующую намотку.
- Густо обработать всю поверхность пропиточным средством.
- Установить изоляционный слой.
- Пропитать изоляцию.
- Высушить устройство в специальном сушильном шкафу.
- Проверить качество произведенной обмотки.
Обмотка электродвижка — это важный элемент системы, обеспечивающий непрерывную и равномерную подачу тока от стартера до всех остальных частей мотора. Ее повреждение ставит под угрозу всю работоспособность устройства, а несвоевременный ремонт способен и вовсе погубить механизм.
Регулярная диагностика позволит сразу определить неполадку, устранить ее, тем самым повысив срок службы двигателя.
Микроконтроллер
В качестве управляющего микроконтроллера выбран ATMega328p, работающий на частоте 16МГц. Обвязка микроконтроллера — китайский клон Arduino Nano v3 ($1.5). Микроконтроллер генерирует ШИМ сигнал через восьмибитный счётчик с делителем 8, таким образом, частота ШИМ сигнала 16 * 10^6 /255 /8 = 7.8 кГц, что укладывается в максимально доступные для драйвера 20кГц.
Делитель АЦП микроконтроллера установлен на 128; поскольку каждое измерение требует примерно 13 тактов, максимальная частота измерений протекающего тока равна примерно 16 * 10^6 / 128 / 13 = 9.6 кГц. Измерения производятся в фоновом режиме, извещая основную программу об окончании при помощи вызова соответствующего прерывания.
FAQ по электродвигателям
1. Какие электродвигатели применяются чаще всего?
Наиболее распространены асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию и относительно недороги.
Для работы асинхронного двигателя требуется трехфазное напряжение, создающее на обмотках статора вращающееся магнитное поле. Это поле приводит в движение ротор двигателя, который передает крутящий момент на нагрузку, например, на пропеллер вентилятора или редуктор конвейера. Изменяя конфигурацию обмоток статора, можно менять основные характеристики привода – частоту оборотов и мощность на валу. В случае работы асинхронного электродвигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы.
Также в настоящее время находят применение двигатели постоянного тока
. Данные приводы имеют щетки, подверженные износу и искрению. Кроме того, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока используются там, где необходимо быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.
В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.
2. Какие способы управления электродвигателями используются на практике?
Управление электродвигателем подразумевает возможность изменения его скорости и мощности. Так, если на асинхронный двигатель подать напряжение заданной величины и частоты, он будет вращаться с номинальной скоростью и сможет обеспечить мощность на валу не более номинала. Если же нужно понизить или повысить скорость электродвигателя, используют преобразователи частоты. ПЧ может обеспечить нужный режим разгона и торможения, а также позволит оперативно управлять частотой работы.
Для обеспечения требуемого разгона и торможения без изменения рабочей частоты применяют устройство плавного пуска (УПП). Если нужно управлять только разгоном двигателя, используют схему включения «звезда-треугольник».
Для запуска двигателей без ПЧ и УПП широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.
3. Как прозвонить электродвигатель и определить его сопротивление?
Асинхронный электродвигатель, как правило, имеет три обмотки. У каждой обмотки есть по два вывода, которые должны быть обозначены в клеммной коробке двигателя. Если выводы обмоток известны, то можно легко прозвонить каждую из них и сравнить величину сопротивления с остальными обмотками. Если величины сопротивлений отличаются не более, чем на 1%, то скорее всего, обмотки исправны.
Сопротивление обмоток электродвигателя измеряется с помощью омметра, как и сопротивление обмоток трансформатора. Чем больше мощность двигателя, тем меньше сопротивление его обмоток, и наоборот.
4. Как определить мощность электродвигателя?
Проще всего определить номинальную мощность электродвигателя по шильдику. На нем указана механическая мощность (мощность на валу), значение которой всегда меньше потребляемой мощности за счет потерь на трение и нагрев. Однако, если шильдик на корпусе двигателя отсутствует, можно очень приблизительно оценить характеристики привода по его габаритам. При одинаковой мощности двигатель с бо́льшим диаметром вала будет иметь более высокую мощность на валу и меньшую частоту оборотов.
Также мощность можно определить по нагрузке и по настройкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).
Еще один способ – включаем двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого измеряем токоизмерительными клещами ток, который должен быть одинаков по всем обмоткам. Для приблизительной оценки мощности асинхронного двигателя, подключенного по схеме «звезда», нужно разделить номинальный измеренный ток на 2.
5. Как увеличить или уменьшить обороты электродвигателя?
Управление скоростью вращения двигателя необходимо в трех режимах работы – при разгоне, торможении, и в рабочем режиме.
Наиболее универсальный способ управления оборотами — использование частотного преобразователя. Настройками ПЧ можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато.
Управление оборотами двигателя в режиме разгона и торможения возможно при использовании УПП. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.
Осмотр электродвигателя
Сначала проверка начинается с тщательного осмотра. При наличии тех или иных дефектов прибора, он может выйти из строя гораздо раньше установленного срока. Дефекты могут появиться вследствие неправильной эксплуатации двигателя или его перегрузкой. К их числу относят следующее:
- сломанные подставки или монтажные отверстия;
- краска посередине двигателя потемнела вследствие перегрева;
- наличие грязи и других посторонних частиц внутри электродвигателя.
Также осмотр включает в себя проверку маркировки на электродвигателе. Она нанесена на металлический шильдик. который прикреплен снаружи двигателя. Табличка с маркировкой содержит важную информацию о технических характеристиках данного прибора. Как правило, это такие параметры, как:
- сведения о компании-производителей двигателя;
- название модели;
- серийный номер;
- количество оборотов ротора в минуту;
- мощность прибора;
- схема подключения двигателя к тем или иным напряжениям;
- схема получения той или иной скорости и направления движения;
- напряжение – требования в плане напряжения и фазы;
- ток;
- размеры и тип корпуса;
- описание типа статора.
Статор на электродвигателе может быть:
- закрытым;
- обдуваемым посредством вентилятора;
- брызгозащитным и прочих типов.
Как прозвонить электродвигатель мультиметром
Для выявления неисправности электродвигателя в домашних условиях за неимением дорогостоящего профессионального оборудования ничего не остается, как прозвонить электродвигатель мультиметром. С его помощью можно определить большинство поломок, и вам не придется привлекать специалиста. Итак, что нужно сделать?
Подготовка
Перед тем, как проводить диагностику, следует:
- Обесточить агрегат. Если измерение сопротивления осуществляется в цепи, подключенной к электросети, прибор выйдет из строя.
- Откалибровать аппарат, то есть выставить стрелку в нулевое положение (щупы должны быть замкнуты).
- Осмотреть двигатель и выяснить, не затоплен ли он, нет ли запаха горелой изоляции или отломанных деталей и т.д.
Асинхронный, коллекторный, однофазный и трехфазный двигатели прозваниваются по одной и той же методике, небольшая разница в конструкции особой роли не играет, но есть нюансы, которые необходимо учитывать.
Этапы работы
Самые частые неисправности можно поделить на два вида:
- Наличие контакта в месте, где его не должно быть.
- Отсутствие контакта в месте, где он должен быть.
Для начала рассмотрим, как прозвонить 3-фазный электродвигатель мультиметром. Он имеет три катушки, соединенные по схеме «треугольник» или «звезда». На его работоспособность влияют надежность контактов, качество изоляции и правильная намотка.
- Для начала проверьте замыкание на корпус (имейте в виду, значение получится приблизительное, так как для точных показаний требуются более чувствительные приборы).
- Установите значения измерений на мультиметре на максимум.
- Соедините щупы друг с другом, чтобы убедиться в правильности настроек и исправности прибора.
- Соедините один из щупов с корпусом двигателя, если есть контакт, присоедините второй щуп к корпусу и следите за показаниями.
- Если сбоев нет, поочередно коснитесь щупом вывода каждой из трех фаз.
- Если изоляция качественная, проверка должна показать достаточно высокое сопротивление (несколько сотен или тысяч мегом).
Необходимо помнить, что при измерении сопротивления изоляции с помощью мультиметра показания будут выше допустимых, так как ЭДС прибора не превышает 9в. Двигатель же работает при 220 или 380в. По закону Ома значение сопротивления зависит от напряжения, поэтому делайте скидку на разницу.
Далее проверьте целостность обмоток, прозвонив три конца, входящих в борно двигателя. При наличии обрыва дальнейшая проверка не имеет смысла, поскольку прежде нужно устранить эту неисправность.
Затем проверьте короткозамкнутые витки. При соединении «треугольником» показателем неисправности будет большее значение в концах А1 и А3. При соединении «звездой» прибор показывает завышенное значение в цепи А3.
Важно
Зная, как прозвонить асинхронный электродвигатель мультиметром, вы сэкономите время и деньги, так как, возможно, выявятся только мелкие неисправности, которые вы легко устраните самостоятельно.
Для более серьезной и детальной диагностики требуются другие приборы, которые редко используются в быту по причине дороговизны.
Если вы не смогли найти повреждения с помощью мультиметра, обратитесь к специалисту.
Проверка коллекторного электродвигателя
Теперь перейдем к вышеупомянутым нюансам, ведь двигатели бывают разных видов. Как прозвонить коллекторный электродвигатель мультиметром? Схема его проверки выглядит следующим образом:
- Включите прибор на единицы Ом и измерьте попарно сопротивление ламелей коллектора.
- Затем измерьте сопротивление между корпусом якоря и коллектором.
- Проверьте обмотки статора.
- Измерьте сопротивление между корпусом и выводами статора.
Межвитковое замыкание определяется только специальным прибором. Существует способ измерения сопротивления якоря. Снимите с него щетки и подведите к пластинам напряжение до 6в, измерьте падение напряжения между ними.
Для проверки однофазного двигателя прозвоните рабочую и пусковую обмотки. Сопротивление первой должно быть в полтора раза ниже, чем второй.
Для примера возьмем однофазный мотор с тремя выводами, использующийся в стиральных машинах (чаще старого образца). Если между концами очень большое сопротивление, значит катушки соединены последовательно. Остается найти среднюю точку и таким образом определить концы каждой из них в отдельности.
Поскольку электродвигатели встречаются в каждом доме в бытовых приборах – это и холодильник, и пылесос, и многое другое – и они периодически ломаются, знать, как проверить однофазный электродвигатель мультиметром, просто необходимо. Если поломка не слишком серьезная, нести прибор в ремонтную мастерскую нецелесообразно. И у вас появится возможность набраться опыта и получить навыки, работая с двигателями разных типов и модификаций.
Проверка борно
Если после прозвонки остались подозрения, нужно вскрыть клеммную коробку (борно). Часто можно увидеть, что в борно плохо затянут крепеж, или отгорели провода. Если для соединения используются гайки, нужно на каждой клемме проверить протяжку не только верхней гайки, которой прикручен питающий проводник, но и осмотреть гайку, которая держит вывод обмотки, уходящий внутрь двигателя.
При отсутствии мультиметра допускается в первом приближении проверять обмотки на обрыв при помощи универсального пробника-прозвонки. Однако, при этом невозможно определить межвитковое и короткое замыкание в обмотках.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства.
Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметра
Обозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек
Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Проверка мультиметром однофазных коллекторных ЭД
Самодеятельных мастеров или желающих ими стать больше всего интересует прозвонкка электродвигателя домашней техники мультиметром. Проверка исправности движка сводится к диагностированию ротора и статора по отдельности. В бытовой технике применяются однофазные ЭД коллекторного типа. Чтобы приступить к проверке электродвигателя, его разбирают, вынимая статор из корпуса мотора, и в свою очередь извлекают из него якорь.
Следует заметить то, что предварительно нужно осмотреть части электромотора на предмет наличия механических повреждений. Потому, что если таковые обнаружатся, то дальнейшая проверка тестером окажется ненужной. В случае отсутствия таких явлений, как износ и трение подшипников, износ коллекторных колец, проворачивание вращающихся деталей относительно друг друга, приступают к следующим этапам диагностики.
Входной сигнал — функция Хэвисайда (полупериод меандра)
Итак, w(t) = 0, начальные условия I(0) = 0, ток в самом начале не течёт. Приложим постоянное напряжение U0 к клеммам мотора, как себя должен будет вести протекающий ток? Давайте возьмём преобразование Лапласа от левой и правой частей дифференциального уравнения (1):
Для получения второй строчки я использовал линейность преобразования Лапласа, U0/s — взял из таблицы (обычно преобразования Лапласа вручную не считают, пользуются таблицами).
Для получения третьей строки использовано свойство производной.
Последняя строчка получается из предпоследней использованием метода неопределённых декомпозиций. Смысл этого перехода в том, чтобы опять получить табличную функцию. Разумеется, в двадцать первом веке руками это считать ни к чему.
Теперь осталось применить обратное преобразование Лапласа (для правой части мы смотрим таблицу) и мы решили наш диффур. Переход в базис Лапласа превратил дифференциальное уравнение в обычное алгебраическое!
Быстрая проверка результата: по истечении нескольких миллисекунд индуктивность уже не будет играть роли, и мы получим протекающий ток U_0 / R (закон Ома). В самом же начале протекающий ток равен нулю и экспоненциально возрастает, причём скорость возрастания напрямую зависит от индуктивности. Sanity check passed.
Файл с измерениями лежит здесь. Три колонки, секунды, приложенное напряжение (в вольтах), измеренная сила тока (в амперах).
Вот код, который подбирает параметры сопротивления и индуктивности для этого эксперимента:
Скрытый текст
import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt U0 = 19.2 def unit_step_current(x, R, L): return [U0/R — U0/R*np.exp(-t*R/L) for t in x] data = np.genfromtxt(‘unit_step_19.2V.csv’, delimiter=’,’, names=) = curve_fit(unit_step_current, data, data) print(R, L) fig = plt.figure() ax1 = fig.add_subplot(1,1,1) ax1.set_title(«Resistance/inductance fitting») ax1.set_xlabel(‘Time, seconds’) ax1.set_ylabel(‘Current (A), tension (V)’) ax1.plot(data, data, color=’b’, label=’input tension’) ax1.plot(data, data, color=’g’, label=’measured current’) model=unit_step_current(data, R, L) ax1.plot(data, model, color=’r’, label=’fitted curve’) ax1.legend() plt.show() Он говорит, что хорошо подходит пара R=4.4 Ома, L=6мГенри, вот график:
Прозвонка асинхронного двигателя
Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:
- Произвести замеры сопротивления между выводами двигателя. Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
- Провести диагностику утечки тока на «массу». Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.
Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований. Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.
При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.
https://youtube.com/watch?v=3V0zbYIOfZY
Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.
Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.
Как прозвонить: условия
Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны. Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.
Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.
Проверка якоря и статора электродвигателя производится мультиметром. Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.
Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.
Нормы сопротивления изоляции электрических машин
В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.
Допустимое сопротивление при испытании изоляции асинхронных электромашин
При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.
Сопротивление изоляции должно быть:
- в статоре не менее 0,5мОм;
- в фазном роторе не менее 0,2мОм;
- минимальное сопротивление изоляции термодатчиков не нормируется.
Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.
Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта
Изоляция двигателей постоянного тока
Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.
Измерение проводится между разными частями схемы электромашины:
- обмотками возбуждения и коллектором якоря;
- щёткодержателем и корпусом аппарата;
- коллектором якоря и корпусом;
- обмотками возбуждения и корпусом электромашины.
Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности. Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины
При 20°С она составляет:
Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:
Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.