Как определить мощность электродвигателя

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является . Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Чаще всего мощность двигателя обозначена в техническом паспорте к устройству и продублирована на корпусе, где есть специальная наклейка или планка с основными техническими параметрами.

Однако нередко случается, что данные на корпусе являются не читаемыми, а технический паспорт давно утерян.

Как же в таком случае выяснить параметры мощности электромотора?

АСИНХРОННЫЕ ЭЛЕКТРОДВИГАТЕЛИ SIEMENS

ООО «ПРОМОБОРУДОВАНИЕ»SIEMENSSIEMENSDIN EN ISO 9001

Отличительные особенности электродвигателей:

  • повышенный КПД;
  • соответствие европейским (DIN/VDE) и международным нормам (IEC/EN);
  • производство сертифицировано по стандарту DIN EN ISO 9001;
  • качественная сталь (железо, медь и алюминий);
  • улучшенные система охлаждения и подшипниковые узлы;
  • простота эксплуатации и технического обслуживания;
  • меньшие температурные нагрузки;
  • долгий срок эксплуатации обмотки и подшипников вследствие меньших температурных нагрузок;
  • пониженный шум при работе;
  • повышенная перегрузочная способность вследствие улучшенного охлаждения;
  • пригодны для работы с преобразователем частоты, стойкая изоляция DURIGNITIR2000;
  • всевозможные варианты конструктивного исполнения.

Расшифровка обозначений электродвигателей SIEMEMS

Позиция

Расшифровка

Пример

1.2.3. 4.

Тип электродвигателя

1LA7 — трехфазный асинхронный электродвигатель с короткозамкнутым ротором.

5.6.

Габарит

Цифра

05

06

07

08

09

10

11

13

16

мм

56

63

71

80

90

100

112

132

160

7.

Габарит

Цифра

0(1)

3(4)

6(7)

Расшифровка

короткий

«S»

средний

«M»

длинный

«L»

8.

Количество полюсов

Цифра

1

2

4

6

8

9.

Конструкция

Односкоростные
электродвигатели

А-

стандартные

Двухскоростные
электродвигатели

A-

с постоянным моментом

B-

с
вентиляторной

нагрузкой

10.

Конструкция

Односкоростные
электродвигатели

А — класс ротора 16

В — класс ротора 13

С — класс ротора 10

Двухскоростные электродвигатели

А — переключение полюсов 4/2

В — переключение полюсов 8/4

D — переключение полюсов 6/4

11.

Напряжение, схема подключения, частота.

Трехфазные электродвигатели

Цифра

1

3

5

6

Расшифровка

Δ/Υ230/400В 50

Гц
Υ 460В

60

Гц

Υ 460В

50

Гц

Δ 500В

50

Гц

Δ/Υ 230/400В

50

Гц
Υ 460В

60

Гц

Однофазные электродвигатели

Цифра

1

5

6

Расшифровка

690В 50Гц

230В 50Гц

500В 50Гц

400В 50Гц

12.

Монтажное исполнение

Цифра

1

2

4

6

7

Обозначение

IM B3

IM B5

IM B14

IM V1

IM B35

IM B34

Расшифровка

Лапы

Фланец

Малый фланец

Фланец вертикальный

Фланец лапы

Малый фланец лапы

Рисунок

Примечание: Возможны и другие варианты исполнения электродвигателей Siemens

Z

Опции

Возможные встраиваемые опции смотрите ниже.

Возможные серии электродвигателей SIEMENS

Серия Внешний вид Описание
1LA7 Электродвигатели Siemens типа 1LA7 -являются самыми популярными на российском и мировом рынках и подходят для решения большинства приводных задач.
Производятся мощностью от 0,06 до 18,5 кВт, габаритами от 56 до 160.Технические характеристики
1LA9 Электродвигатели Siemens типа 1LA9 -электродвигатели с повышенной мощностью, производятся мощностью от 0,14 до 24,5 кВт, габаритами с 56 по 160.Технические характеристики
1LG4 Электродвигатели Siemens типа 1LG4 -производятся мощностью от 11 до 200 кВт, габаритами от 180 до 315. Предназначены для выполнения мощных приводных задач.Технические характеристики
1MG7 Электродвигатели Siemens серии 1MG7 взрывозащищенной конструкции (EExdellC), производятся мощностью от 18,5 до 200 кВт, габаритами от 225 до 315.Технические характеристики
AOM Электродвигатели Siemens серии АОМ противовзрывного исполнения (EExdIIC) производятся мощностью от 0,25 до 37 кВт, габаритами от 71 до 200. Предназначены для работы на взрывоопасных производствах, таких, как химические, нефтеперерабатывающие, где могут возникать смеси с воздухом горючих паров или пыли.Технические характеристики

Возможные встравиваемые опции электродвигателей SIEMENSПрисоединительные размеры фланцев

Обозначение — маркировка обмоток двигателя

По ГОСТ 26772-85 обмотки трехфазных асинхронных двигателей должны маркироваться буквами:

U1-U2

V1-V2

W1-W2

По старому госту обозначение было несколько иным:

С1-С4

С2-С5

С3-С6

Еще раньше можно было встретить надписи Н1-К1 (начало-конец обмотки №1), Н2-К2, Н3-К3.

На некоторых движках для облегчения распознавания концов обмоток их выводят из разных отверстий на одну или другую сторону. Как например на фото снизу.

Но не всегда можно доверять таким выводам. Поэтому проверить все вручную никогда не помешает.

Если никаких обозначений и букв на барно нет, и вы не знаете, где у вас начало, а где конец обмотки, читайте инструкцию под спойлером.

Подписка на рассылку

Решив заменить вышедший из строя советский электродвигатель на новый агрегат, вы можете столкнуться с тем, что на старом устройстве не сохранилась табличка. Может оказаться и так, что информация на шильдике нечитаемая. Хорошо если сохранилась техническая документация. Но вероятность этого крайне мала. Выход есть и из такой ситуации. Рассмотрим методы установления мощности электрического агрегата.

Возможен ли расчет по габаритам?

Можно установить мощность электрического мотора по размерам, току, показанию счетчика, диаметру вала. Итак, как определить мощность электродвигателя без бирки по габаритам устройства.

Между собой электромоторы различаются, прежде всего, габаритами. Указанный способ применяют преимущественно для установления мощности 3-хфазных агрегатов.

Чтобы произвести расчет, узнайте следующее:

  • Частота сети (f).
  • Диаметр сердечника (D).
  • Синхронная частота валового вращения (n).

Может потребоваться определить не только мощность, но и обороты электродвигателя — синхронную частоту валового вращения. С этой целью просто посчитайте число полюсов. Здесь нужен миллиамперметр. Подсоедините это измерительное устройство к одной из обмоток статора.

Как только вал агрегата начнет вращаться, стрелка амперметра будет отклоняться. Количество ее отклонений за 1 оборот равняется числу полюсов:

  • 3000 оборотов в минуту = 2 полюса;
  • 1500 оборотов в минуту = 4 полюса;
  • 2000 оборотов в минуту = 6 полюса;
  • 750 оборотов в минуту =8 полюса.

Для расчета мощности используйте формулы:

D × n × число Пи = А

Полученная цифра и будет мощностью (кВт) агрегата.

Производим вычисление по току

Мощность 3-хфазного электродвигателя (P) можно определить еще и по току. Подключите агрегат к сети и произведите замер показателей напряжения (U). При помощи мультиметра или амперметра узнайте потребляемый ток (Ia, Ib, Ic) на всех обмотках фаз мотора.

Далее воспользуйтесь следующей формулой:

P = U × (Ia + Ib +Ic)

Измерение по показанию счетчика

При использовании данного метода важно отключить все электрические приборы, что позволит произвести измерения максимально точно. Если по каким-то причинам это сделать невозможно, стоит использовать портативный счетчик

При мощности агрегата в 2,2 кВт, имеется в виду, что он потребляет за один час 2,2 кВт электроэнергии.

Чтобы произвести замер выполните два действия:

  • Подключите двигатель к электросети и дайте ему поработать 6 минут.
  • Умножьте полученные замеры счетчика на 10 — это и есть мощность агрегата.

Как по валу определить мощность электродвигателя?

Одинаковые по размерам электромоторы, с равной частотой вращения и схожими валами могут обладать разной мощностью. Поэтому чтобы по валу определить мощность электродвигателя произведите замер всех размеров агрегата:

  • высота вращения вала;
  • вылет вала;
  • длина агрегата без вала;
  • высота агрегата;
  • диаметр фланца (если есть);
  • расстояние между отверстиями в лапах.

Имея информацию о размерах двигателя, можно по специальным таблицам найти мощность электромотора.

Зная, как определить мощность электродвигателя и его обороты, вы легко сможете подобрать агрегат подходящей модификации. Выбирайте наиболее удобный для себя метод, и смело приступайте к расчетам!

Если техническая документация к двигателю утеряна, а надписи на корпусе стерлись или не читаемы, возникает вопрос: как определить мощность электродвигателя без бирки? Существуют несколько методов, о которых мы вам расскажем, и вам останется выбрать из них наиболее удобный в вашем случае.

Л.с. и Н.м.

Мощность и крутящий момент в моторе неразрывно между собой связаны, так как эта лошадиная сила происходит из крутящего момента. Формула для расчета мощности двигателя очень проста.

Изначально необходимо, силу, которая выражается в Ньютон-метрах (Н.м.) надо умножить на 0,7376, все это для того, чтобы перевести значения в Британскую и Американскую единицу измерения силы (Фунт-Фут), далее, воспользовавшись выше указанной формулой умножить таковые данные на количество оборотов двигателя (RPM), и, полученное после умножения значение необходимо разделить на число 5252. В итоге мы получим приблизительное к точности значение мощности самого двигателя, которое и будет выражаеться в лошадиных силах. На примере нижеуказанной формулы нами был сделан расчет мощности двигателя при силе 100 фунт-фут (1000 оборотов в минуту двигателя). Из этого примера видно, что при силе в 100 фунт-футов и 1000 оборотов в минуту мощность двигателя составила приблизительно около 19 л.с. 

Разницу между мощностью и силой легко понять еще на одном примере. Допустим, что вы на автомобиле буксируете какой-то груз в гору, значит вам будет необходим низкий крутящий момент, но естественно потребуется и больше силы для более легкого буксирования. А если же вы хотите максимально быстро разогнать свой автомобиль с 0 до 100 км/час, то ему потребуется уже максимальное количество оборотов двигателя, а силы для такого разгона за короткий промежуток времени уже потребуется не так много. Но чем больше будет мощность двигателя, тем быстрее вы разгоните свою автомашину до 100 километров.

Поэтому различная грузовая и подъемная техника всегда, как правило оснащается дизельными двигателями, которые имеют большую тягу и не высокое максимальное количество оборотов двигателя, если их сравненивать с бензиновыми силовыми агрегатами. Дизельные двигатели способны передвигать транспортные средства имеющие огромную весовую массу. Но такой автотранспорт из-за небольшого количества л.с. очень медленно трогается и разгоняется.

Вот почему, такой автомобиль как Honda S2000 может сорваться с места и разогнаться до 100 километров в час примерно за 6 секунд, Dodge RAM 3500 может буксировать груз весом более 8000 тыс. килограмм (на прицепе). Это и есть абсолютное различие между крутящим моментом и лошадиной силой.

В транспортных средствах есть еще один элемент, который помогает автомобилю передавать крутящий момент на колеса,- это коробка переключения скоростей передач, которая предназначена для передачи максимального крутящего момента при определенной скорости. Например, тракторные тягачи и трактора для перевозки тяжелых грузов в прицепах оснащаются большими дизельными двигателями, у которых большой крутящий момент и большая сила, которая выражается в Ньютон-метрах (Н.м.). Но такие двигатели не имеют большого количества лошадиных сил. Такие двигатели созданы не для разгона транспортного средства до высокой скорости, как правило, они нужны в основном для перевозки тяжелых грузов. Некоторые такие тракторы оснащены 10 ступенчатыми коробками передач.

Так мощность и крутящий момент непосредственно близко связаны друг с другом. Лошадиная сила зависит от крутящего момента (силы Н.м.) и от количества оборотов в минуту двигателя. 

Крутящий момент по своей сути,- это сила и мощность с которой можно сделать определенную работу. И чем меньше затрачивается времени для выполнения (или набора определенной скорости) такой работы, тем больше мощность самого автомобиля, которая выражается в лошадиных силах. 

Как определить параметры двигателя без шильдика?

Иногда возникает необходимость подобрать новый электродвигатель на замену вышедшему из строя. Обычно аналог подбирают, исходя из информации на шильдике. Но что делать, если шильдик отсутствует или совсем не читается и паспорт изделия отсутствует?

Ориентировочно мощность электродвигателя можно определить по его габаритам и диаметру вала. При одинаковых размерах и большем диаметре вала мощность на валу будет больше, а частота оборотов – меньше.

Если двигатель уже подключен, то примерная мощность определяется по уставкам защитных устройств, через которые он питается (мотор-автомат, тепловое реле). Если привод подключен через преобразователь частоты, мощность будет равна либо меньше мощности ПЧ.

Еще один способ – включить двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого нужно померить токоизмерительными клещами ток двигателя, который должен быть одинаков по всем обмоткам. На основании измеренного тока определяется мощность.

Также приблизительно оценить мощность асинхронного двигателя, подключенного по схеме «звезда», можно, разделив его номинальный измеренный ток на 2. Для двигателей менее 1,5 кВт из-за потерь ток нужно делить на 2,2…2,5, для мощности более 30 кВт этот эмпирический коэффициент будет равен 1,8…1,9.

Если нет шильдика, косвенно мощность можно определить и по сопротивлению обмоток, заодно проверив их целостность. Для этого необходимо измерить сопротивления при помощи омметра и сравнить их с сопротивлением двигателей известных мощностей, либо обратиться к информации от производителей.

Как было сказано выше, частоту оборотов двигателя можно оценить по диаметру вала. Но есть и другие способы.

Согласно известной формуле, скорость вращения электродвигателя равна 60F/P, где F — частота питающей сети (50 Гц), Р – количество пар полюсов статора.

Полюсы можно посчитать, сняв переднюю или заднюю крышку. В двухполюсном электродвигателе (Р = 1) на каждую фазу приходится одна обмотка, содержащая 2 катушки, итого для трех фаз 6 катушек. Исходя из способа намотки нужно определить конфигурацию катушки, затем установить способ намотки всего статора. При количестве пар полюсов Р = 1 скорость вращения составит 3000 об/мин, при P = 2 – 1500 об/мин и так далее.

Отметим, что реальная скорость вращения двигателя отличается от расчетной за счет механических потерь и скольжения электромагнитного поля. У маломощных двигателей рабочая скорость под нагрузкой может быть ниже расчетной на 10-15 %.

Напряжение можно определить по схеме включения. Если двигатель подключен «звездой», его питающее линейное напряжение равно 380 В, а если «треугольником» – 220 В. Тогда в первом случае электродвигатель можно питать от сети напрямую, во втором – от однофазной сети через конденсатор или преобразователь частоты.

В большинстве новых двигателей для определения схемы включения достаточно вскрыть коробку борно. В ней расположены три пары проводов, подключенных по одной из схем, а на обратной стороне крышки борно указаны схемы и напряжения питания.

Vladimirus-team

Ток двигателя I = P /(1,73 *U *кпд* Cosф);

Номинальные данные электродвигателя указываются на заводском щитке или в другой технической документации.

  • 1,73 это корень из трех;
  • U (Вольт) — линейное напряжение;
  • Р (Ватт) — Мощность асинхронного двигателя
  • КПД (η) — коэффициент полезного действия, берется из паспортных данных, или в интервале 0.8 -0.9;
  • Cos(Ф) — коэффициент мощности берется из паспортных из паспортных данных, или в интервале 0.8 — 0.9.
  • I (Aмпер) ток;

Поделиться в соц сетях:

Комментарии

бред — номинальный ток электродвигателя мощностью 55 кВт получается 1 Ампер.

Здравствуйте. Вы учли, что мощность в данном калькуляторе, нужно указывать в Ваттах.

Т.е, В поле мощность указываем 55000, а не 55.

Отправить комментарий

Формула Миффлина-Сан Жеора для расчета калорий

Формула основного обмена Миффлина-Сан Жеора Формула основного обмена Миффлина-Сан Жеора выведена в 2005 году и по утверждению Американской Диетической Ассоциации (АДА) на сегодняшний день позволяет наиболее точно рассчитать сколько калорий тратит организм здорового взрослого человека в состоянии покоя.

Расчет базового обмена веществ: Формула Миффлина-Сан Жеора для женщины: ВОО =10 * вес(кг) + 6.25 * рост (см) – 4.92 * возраст – 161; Формула Миффлина-Сан Жеора для мужчины: ВОО = 10 * вес (кг) + 6.25 * рост (см) – 4.92 * возраст + 5; Рассчитав по формуле Миффлина-Сан Жеора величину основного обмена веществ (ВООВ), можно вычислить и примерное количество калорий, необходимых в сутки для поддержания веса тела с учетом уровня физической нагрузки.

Для этого умножаем полученное число на коэффициент физической активности.

Коэффициенты физической активности (К)Минимальные нагрузки (сидячая работа) — К=1.2Немного дневной активности и легкие упражнения 1-3 раза в неделю — К=1.375Тренировки 4-5 ра…

Расчет мощности кондиционера

Ориентировочный расчет мощности охлаждения Q (в киловаттах) производится по общепринятой методике:

Q = Q1 + Q2 + Q3, где Q1 — теплопритоки от окна, стен, пола и потолка.

Q1 = S * h * q / 1000, где: S — площадь помещения (м2); h — высота помещения (м); q — коэффициент, равный: q = 30 для затененного помещения;q = 35 при средней освещенности;q = 40 для помещений, в которые попадает много солнечного света. Если в помещение попадают прямые солнечные лучи, то на окнах должны быть светлые шторы или жалюзи.

Q2 — сумма теплопритоков от людей. Теплопритоки от взрослого человека: .1 кВт — в спокойном состоянии;0.13 кВт — при легком движении;0.2 кВт — при физической нагрузке;Q3 — сумма теплопритоков от бытовых приборов. Теплопритоки от бытовых приборов:0.3 кВт — от компьютера;0.2 кВт — от телевизора; Для других приборов можно считать, что они выделяют в виде тепла 30% от максимальной потребляемой мощности (то есть предполагается, что средняя потребляемая мощность составляет 30% от максимальн…

Расчет мощности обогревателя

Расчет мощности обогревателя Перед выбором обогревателя нужно рассчитать минимальное значение тепловой мощности вашего помещения.

Мощность зависит от: объема помещения, которое необходимо будет обогревать,разницы температур в помещении и снаружи. коэффициента рассеивания, прямо зависящего от изоляции помещения и типа конструкции. Коэффициент рассеивания имеет определенные постоянные значения. деревянные конструкции или металлические (без теплоизоляции) коэффициент имеет значение 3-4. при небольшой теплоизоляции в упрощенной конструкции помещения 2-2.9.средняя теплоизоляция и стандартная конструкция коэффициента в пределах от 1 до 1.9.улучшенная теплоизоляция (кирпичные стены, двойная теплоизоляция, толстый пол, высококачественный материал крыши), коэффициент равен 0.6-0.9. Для расчета мощности обогревателя , используется упрощенная система расчета необходимой тепловой мощности пушки, калорифера, обогревателя: P=V * Δ T * k/860. Расчет мощности обогревателя онлайнВысота помещения: …

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Заключение

Мы рассмотрели основные способы определения мощности электродвигателя. Есть и другие методы, например, по сопротивлению обмоток, но он не может быть точным, так как после перемотки оно может не соответствовать паспортным данным. Да и чтобы точно измерить сопротивление обмоток статора мощных двигателей нужны точные измерительные приборы, так называемый измерительный мост, или производить замеры методом вольтметра-амперметра. Чего делать на практике никто не будет, а мультиметром точно сделать такие замеры не получится.

Способ определения параметров электродвигателя по весу также нельзя называть точным, он заключается в том, что, в среднем, вес асинхронного электродвигателя равняется:

  • для 3000 об/мин — 7-9 кг на 1 кВт;
  • для 1500 об/мин — 11-13 кг/кВт;
  • Для 1000 об/мин — 14-15 кг/кВт.

Но точным его назвать совсем нельзя, корпуса современных электродвигателей выполняются из алюминия и легче до 30%, по сравнению со старыми советскими, тогда как защищенный электродвигатель будет весить больше своего незащищенного аналога. Поэтому такой метод, хоть и имеет право на жизнь, но больше похож на гадания на кофейной гуще.

Пожалуй, самое простое определение мощности электродвигателя — по размерам, диаметру вала и т.д. с последующим сравнением с каталожными данными двигателей такой же серии.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все про Skoda
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: