Устройство КШМ
Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:
- Цилиндро-поршневая группа (ЦПГ).
- Шатун.
- Коленчатый вал.
Все эти компоненты размещаются в блоке цилиндров.
ЦПГ
Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.
После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.
Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.
Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.
Шатун
Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.
Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.
По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.
В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).
Коленчатый вал
Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.
Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.
В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.
Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.
Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.
Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.
Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.
На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.
Детали кривошипно-шатунного механизма
а — V- образного карбюраторного двигателя; 6 — V-образного дизельного двигателя; в — соединение головки блока цилиндров, гильзы и блока цилиндров двигателя KaМA3-740; 1- крышка блока распределительных зубчатых колес; 2 — прокладка головки блока цилиндров; 3 — камера сгорания, 4 — головка блока цилиндров, 5 — гильза цилиндра; 6 и 19 — уплотнительные кольца, 7 — блок цилиндров; 8 — резиновая прокладка; 9 — головка блока цилиндров; 10 -прокладка крышки; 11 — крышка головки блоки цилиндров; 12 и 13 — болты крепления крышки и головки блока цилиндров; 14 — патрубок выпускного коллектора; 15 — болт-стяжка; 16 — крышка коренного подшипника: 17 — болт крепления крышки коренного подшипника; 17 — стопорное кольцо: 20 — стальная прокладка головки блока цилиндров.
Блок картер
Блок-картер отливают из легированного чугуна или алюминиевых сплавов.Блок-картер разделен на дне части горизонтальной перегородкой. В нижней части в вертикальных перегородках имеются разъемные отверстия крепления коленчатого вала, в верхней гильзы цилиндров. Блок-картер может быть отлит вместе с цилиндрами («сухие» гильзы), либо иметь вставные сменные гильзы, непосредственно омываемые охлаждающей жидкостью, так называемые «мокрые» гильзы. Также в блок-картере выполнены гладкие отверстия пол коренные опоры распределительного вала, под толкатели ГРМ, имеются гладкие и резьбовые отверстия и припадочные поверхности крепления деталей и приборов.
Гильзы цилиндров
Гильзы цилиндров являются направляющими для поршня и вместе с головкой образуют полость, в которой осуществляется рабочий ЦИКЛ, Изготовляют гильзы литьем из специального чугуна. На наружной поверхности имеется одна или две посадочные поверхности крепления гильзы в блоке цилиндров. Внутреннюю поверхность цилиндра подвергают закалке с нагревом ТВЧ и тщательно обрабатывают, получая «зеркальную» поверхность.
Верхняя часть цилиндра наиболее нагружена, так как здесь происходит сгорание рабочей смеси, сопровождаемое резким повышением давления и температуры. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Для повышения износостойкости верхней част цилиндров в карбюраторных двигателях (ЗМЗ-53 и ЗИЛ-508.10) применяют пеганки из специального износостойкого чугуна» запрессованные в верхней части цилиндра. Толщина вставки 2—4 мм. высота 40—50 мм. используемый материал — аустенитный чугун.
«Мокрые» гильзы могут быть установлены в блок-картер с центровкой по одному или двум поясам. Первый способ применяется для постановки гильзы в алюминиевые, в юрой — в чугунные блоки. Для уплотнения нижнего центрирующего пояска «мокрых» гильз применяют резиновые кольца гильзы с центровкой по одному нижнему поясу уплотняются одной медной прокладкой под горне нон плоскостью буртика.
Головка блока
Головка блока цилиндров закрывает цилиндры и образует верхнюю часть рабочей полости двигателя, в ней частично или полностью размещаются камеры сгорания. Головки блока цилиндров отливают из легированного серого чугуна или алюминисвого сплава. Чаще всего они являются общими для всех цилиндров, образующих ряд. В головках блока цилиндров разметаются гнезда и направляющие втулки клапанов, впускные и выпускные каналы. Их внутренние полости образуют рубашку для охлаждающей жидкости. В верхней части имеются опорные площадки для крепления деталей клапанного механизма, В конструкциях с верхним расположением распределительного вала предусмотрены соответствующих опоры. Для уплотнения стыка головки блока цилиндров и блока цилиндров применяю) сталеасбестовую уплотняющую прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости и масла в цилиндры. В двигателях послушного охлаждения головки блока цилиндров делают ребренными. Причем ребра располагают по движению потока охлаждающего воздуха. Так, чтобы обеспечивался более эффективный теплоотвод.
Поддон картера
Поддон картера закрывает KШМ снизу и одновременно является резервуаром для масла. Поддоны изготовляют штамповкой из листовой стали или отливают из алюминиевых сплавов. Внутри поддонов могут выполняться лотки и перегородки, препятствующие перемещению и взбалтыванию масла при лвижении автомобиля по неровным дорогам, Привалочная поверхность, стыкующаяся с блок-картером, имеет от-бортовку металла и усиливается для придания жесткости стальной полосой, приваренной по периметру. В нижней точке поддона приваривается бобышка с резьбовым отверстием, которое закрывают пробкой с магнитом для улавливания металлических продуктов износа, образующихся вследствие изнашивания двигателя.
Конструкционные материалы деталей ЦПГ
Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.
В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.
Поршневые кольца, наиболее подверженные износу и деформациям, производят из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем).
Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.
Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.
В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.
Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.
MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.
На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.
MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.
Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС.
Конструкция облегченного маховика
Технически обосновал, что дает облегченный маховик спортивным автомобилям, двукратный чемпион-раллист Э. Г. Сингуринди. До сих пор конструкция облегченного маховика «по Сингуринди» остается эталоном, но только с учетом конструкции всего двигателя и сцепления.
Маховик по Сингуринди облегченный
За счет чего снижается вес?
Тюнинг собственными силами в 85% случаев невозможен, так как необходима достаточно высокая квалификация сварщика, наличие стенда для динамической балансировки коленвала в сборе, поэтому производители выпускают для опытных пользователей облегченный маховик двух типов:
- чугунный – фрезеровкой удалены сегменты возле наружного радиуса изделия;
- дюралевый – диск цельный, чаще всего, стандартных размеров, но изготовлен из сплавов алюминия.
Маховик с прорезанными окнами
Маховик из алюминиевого сплава
Стандартные маховики весят 6 – 13 кг, облегченные модификации 4 – 2,8 кг (реже 2,5 кг)
Замена штатной детали на облегченный маховик производится только в комплекте со сцеплением, поэтому важно, чтобы посадочные отверстия корзины совпадали
Дюралевый облегченный маховик имеет плюсы и минусы:
- деталь цельная, лучше противостоит механическим поломкам;
- однако металл мягкий, износ значительно выше.
У чугунного и стального маховика ситуация прямо противоположная – высокая износостойкость, низкая механическая прочность возле зубчатого венца.
«Лишний» металл снимают с изделия несколькими способами:
- фрезерованием в промышленных условиях;
- высверливанием сквозных отверстий в гараже, на СТО;
- обтачиванием на токарно-винторезных станках на заводе или в гараже.
Фрезеровка наружного радиуса
Высверливание отверстий
Проточка тела на токарном станке
Сингурдини начинал свои опыты в советские времена на двигателях «Жигулей» и 412 «Москвичей». Позже доказал, что облегченные маховики могут эксплуатироваться на тяжелых легковых машинах (ГАЗ, внедорожники) без снижения комфортности старта и на малых оборотах.
Сварка венца и обработка шва болгаркой
Основным условием является обработка (стачивание) стенки маховика, на которой расположены посадочные отверстия для корзины сцепления, до размера (толщины), не меньше диаметра внутренней резьбы. Например, если корзина крепится болтом М8, стенка должна быть минимум 8 мм. В противном случае на высоких оборотах тело детали может быть срезано крепежом.
На что влияет изменение конструкции?
Эксплуатация облегченного маховика по ощущениям добавляет мотору мощности. На самом деле после обтачивания детали своими руками на малых оборотах расходуется на 2% меньше кинетической энергии. Зато при увеличении оборотов экономия наблюдается уже в геометрической прогрессии.
Новичку сложно тронуться с таким маховиком в гору и преодолеть «лежачего полицейского». Для профессионала на низких оборотах придется чаще выжимать акселератор, зато при их увеличении комфорт и динамика резко повышаются.
Зачем он нужен и для чего его устанавливают?
Если разобрать все по полочкам, то получается вот такая информация.
1) Облегчение позволяет двигателю работать с более высокими оборотами, это полезно для тюнинговых двигателей, например с компрессором. А как известно при высоких оборотах мощность возрастает.
2) Двигатель быстрее набирает обороты, ему не нужно тратить энергию на раскрутку тяжелых поршней.
3) Двигатель работает более ровно, уменьшается детонация. Посмотрите короткий, но познавательный ролик.
https://youtube.com/watch?v=5dqpF8bXb0k
4) Ходит мнение, что увеличивается ресурс деталей. Так как испытываемые нагрузки уменьшаются в связи с уменьшение веса поршня.
Если подвести промежуточный итог, то получается – скоростнее (более высокие обороты), более уверенный старт с места, меньше детонации, больше ресурс.
Поршень с кольцами и пальцем
Поршень – это небольшая цилиндрическая деталь, изготовленная из алюминиевого сплава. Его основным назначением является преобразование давления выделяемых газов в поступательное движение, передаваемое в шатун. Возвратно-поступательное движение обеспечивается за счет гильзы.
Поршень состоит из юбки, головки и дна (днища). Дно может иметь разную форму (выпуклую, вогнутую или плоскую), в нем содержится камера сгорания. На головке расположены небольшие канавки для поршневых колец (маслосъемных и компрессионных).
Кольца компрессионного типа предотвращают возможное попадание газов в двигательный картер, а кольца малосъемного типа предназначены для удаления лишнего масла со стенок цилиндра.
Юбка оснащена специальными бобышками с отверстиями, для установления поршневого пальца, соединяющий поршень и шатун.
Шатун
Шатун – еще одна деталь КШМ, которая изготавливается из стали методом штамповки или ковки, оснащенная шарнирными соединениями. Шатун предназначен для передачи энергии движения от поршня к валу.
Шатун складывается из верхней, разборной нижней головки и стержня. Верхняя головка соединяется с поршневым пальцем. Нижнюю разборную головку можно соединять с шейкой вала с помощью крышек (шатунных).
Кривошип (колено)
К любому кривошипу (колено) крепится шатун поршня. Зачастую кривошип располагается от оси шеек в определенном радиусе, что определяет ход поршня. Именно эта деталь дала название кривошипно-шатунному механизму.
Коленчатый вал
Еще одна подвижная деталь механизма сложной конфигурации, изготовленная из чугуна или стали. Основным назначением вала является преобразование поступательного поршневого движения поршня во вращательный момент.
Коленчатый вал складывается из шеек (коренных, шатунных), щек (соединяющих шейки) и противовесов. Щеки создают равновесие при работе всего механизма. Внутри шейки и щеки оснащены небольшими отверстиями, через которые под давлением происходит подача масла.
Маховик
Маховик, как правило, установлен на конце вала. Изготавливается из чугуна. Маховик предназначен для повышения равномерного вращения вала для запуска двигателя с помощью стартера.
В настоящее время чаще применяются маховики двухмассового типа – два диска, которые достаточно плотно соединены между собой.
Блок цилиндров
Это неподвижная деталь КШМ, которая изготавливается из чугуна или алюминия. Блок предназначен для направления поршней, именно в них осуществляется весь рабочий процесс.
Блок цилиндров может быть оснащен рубашками охлаждения, постелями для подшипников (распределительного и коленчатого вала), точкой крепления.
Головка цилиндров
Эта деталь оснащена камерой сгорания, каналами (впускными и выпускными), отверстиями для свечей зажигания, втулками и седлами. Головка цилиндров изготавливается из алюминия.
Как и блок, головка также имеет рубашку охлаждения, которая соединяется с рубашкой цилиндра. А вот герметичность этого соединения обеспечивается специальная прокладка.
Закрывается головка небольшой штампованной крышкой, при этом между ними устанавливается резиновая прокладка, устойчивая к воздействию масел.
Поршень, гильза цилиндров и шатун образуют то, что автомобилисты обычно называют цилиндр. Двигатель может иметь от одного до 16, а иногда и больше цилиндров. Чем больше цилиндров, тем больше общий рабочий объем двигателя и, соответственно, тем больше его мощность. Но нужно понимать, что при этом одновременно с мощностью растет и расход топлива. Цилиндры в двигателе могут располагаться по различным компоновочным схемам:
- рядная (оси всех цилиндров располагаются в одной плоскости)
- V-образная компоновка (оси цилиндров располагаются под углом 60 или 120 градусов в двух плоскостях)
- оппозитная компоновка (оси цилиндров располагаются под углом 180 градусов)
- VR-компоновка (аналогично V-образной, но плоскости располагаются под небольшим углом относительно друг друга)
- W-образная компоновка представляет собой совмещение на одном коленчатом валу двух VR-компоновок, расположенных V-образно со смещением относительно вертикали
От компоновочной схемы зависит балансировка двигателя, а так же его размер. Наилучшей балансировкой обладает оппозитный двигатель, однако он редко используется на автомобилях из-за конструктивных особенностей.
Так же отличным балансом обладает рядный шестицилиндровый двигатель, но его применение на современных автомобилях практически невозможно из-за его громоздкости. Наибольшее распространение получили V-образные и W-образные двигатели из-за наилучшего сочетания динамических характеристик и конструктивных особенностей.
Как удалить нагар из двигателя не разбирая его, признаки закоксованности двс
Со временем в двигателе появляются различные отложения(нагар), которые мешают его нормальной работе. Избавится от нагара довольно просто, нужно.
Здравствуйте! Насколько бы часто вы не меняли масло в ДВС, насколько качественное бы топливо вы не использовали, нагар все равно будет появляться в ДВС. Но это отличная профилактика.
Нагар образовывается почти везде: на клапанах, поршневых кольцах, поршнях и т.д. Нагар на кольцах приводит к ограничению их подвижности, как говорят в народе: «кольца залегли».
Из-за чего нагар образуется существенно больше? Некачественное топливо, которое частично не сгорает, неправильно подобранное масло, либо масло низкого качества.
Очень вредно подвергать нагрузке еще холодный двигатель. Прогревать нужно обязательно!
Как узнать, что двигатель значительно загрязнен?
Машина перегревается по непонятным причинам. То есть, антифриз в норме, вентилятор охлаждения срабатывает, течи нигде нет. Машина греется намного быстрее, вентилятор охлаждения стал срабатывать намного чаще.
Это происходит по причине ухудшения теплообмена.
Запустив двигатель после длительной стоянки (от 5 часов летом и от 3 часов зимой), из выхлопной трубы какое-то время идет черный дым(5-30 секунд). После запуска двигатель работает не ровно, пока не прогреется. После прогрева его работа улучшается.
В салоне, после запуска ДВС, можно ощущать неприятный запах чего-то подгоревшего. Такой же запах может появляться, когда двигатель испытывает нагрузки.
Ухудшается «тяга» -машина дольше набирает скорость. Повышается расход топлива на 15-20%.
В момент выключения зажигания, периодически происходит детонация. Ощущается секундная сильная вибрация. Это происходит из-за сгорания остатков топлива, которое воспламеняется не от свеч зажигания, а от раскаленного нагара.
Это были признаки закоксованности ДВС, как же удалить нагар из двигателя не разбирая его?
Итак, нам потребуется приобрести сжатый воздух в баллончике, шприц с трубкой и специальную жидкость для раскоксовки. Эти вещи могут продаваться как раздельно, так и сразу-комплектом. Выглядит комплект примерно так:
Теперь наша задача выкрутить все свечи и выставить поршня примерно на один уровень. Это будет сделать просто, соорудив четыре равные тонкие и длинные палочки(я использую ветки деревьев) и опустить их в свечные колодцы. Теперь можно специальным ключом прокручивать шкив коленвала, либо поднять переднее колесо(если передний привод), включить 5 передачу и прокручивать колесо.
С помощью шприца и трубки заливаем в каждый колодец приобретенную нами специальную жидкость. Сколько заливать? -Читайте в инструкции. Поставьте свечи на место, сильно не затягивайте, только наживите.
Теперь нужно дать средству время на раскоксовку. Эффект будет уже через два часа, но в идеале, нужно подождать 10-12 часов. При этом можно несколько раз прокрутить шкив, изменив положение поршней.
По прошествии нужного времени, с помощью того же шприца с трубкой удалите жидкость из колодцев.
После удаления жидкости, в ход идет сжатый воздух. Тщательно продуйте им свечные колодцы, куда вы заливали жидкость.
Не ставя свечи на место , сядьте в машину, включите зажигание, нажмите педаль газа в пол и крутите стартер 3-5 сек. Повторите 1-3 раза.
Ставьте свечи на место, запускайте двигатель. Дайте ему поработать 5-10 минут. В первое время можете наблюдать нестабильную работу ДВС и черный дым из выхлопной, это прогорает оставшееся в ДВС средство, которое мы заливали.
Таким образом, мы очистили от нагара камеры сгорания, поршня. Чтобы очистить остальной ДВС нужно:
Есть разнообразные средства, которые можно и в бензобак добавлять и в масло.
Я предпочитаю использование промывочного масла. Сливаете старое масло, заливаете промывочное. На нем нужно проехать определенное количество километров. Обычно от 50 до 150.
Ездить на промывочном масле нужно крайне аккуратно, не подвергая ДВС нагрузкам, по причине того, что данное масло обладает низкой эффективностью смазывания трущихся деталей, у него же другая цель, помните?
После чего сливаем промывочное масло, заливаем два-три литра обычного, запускаем ДВС и даем ему поработать 5 минут. После чего снова его сливаем. Теперь заливаем нужное количество обычного масла и спокойно эксплуатируем автомобиль, промывка закончена. Грубо говоря, прополоскали ДВС.
Если ваш двигатель действительно был закоксован и вы правильно его промыли, результаты вам очень понравятся!
Зачем ставить «безвтыковый» поршень на Приору
На практике, стандартная конструкция при должном уходе, соблюдении правил эксплуатации и обслуживании будет работать долго. Главное — своевременно обслуживать ГРМ, менять ролики и ремень, устранять неисправности, а также использовать качественные детали.
Однако высокие нагрузки, тяжелые условия, нерегулярное обслуживание и использование запчастей сомнительного качества значительно снижают надежность мотора. Также можно упомянуть и тюнинг двигателя.
В этом случае:
- срок службы роликов и ремня ГРМ заметно сокращается, замена требуется не каждые 40 тыс. км., а каждые 15-20 тыс.
- езда на предельно высоких оборотах, форсирование двигателя или установка турбо наддува также потребуют частой замены ремня и роликов.
Вполне очевидно, что если ремень порвется, в этом случае мотор серьезно страдает и потребуется дорогой ремонт. В свою очередь, «безвтыковые» поршни решают эту проблему. Установка такого поршня на Приору позволит не переживать за двигатель в случае заклинивания роликов и обрыва ремня. Однако нужно также учитывать и недостатки такой доработки.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).
Впуск
По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход
В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
Выпуск
При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.